Hull Structural Design

This chapter introduces hull structural design considerations for design loads and various strengths based on the CSR (Common Structural Rules). A hull structure is a frame of ship which consists of a number of hull structural parts such as plates, stiffe

  • PDF / 1,190,244 Bytes
  • 50 Pages / 439.37 x 666.142 pts Page_size
  • 88 Downloads / 224 Views

DOWNLOAD

REPORT


Hull Structural Design

13.1

Generals

A hull structure is a frame of the ship which consists of a number of hull structural parts such as plates, stiffeners, brackets, and so on. It is like a skeleton of a human. In the case of VLCC of 300,000 ton deadweight, its lightweight amounts to about 41,000 ton. It means this ship can carry more than seven times its own weight. For this, the hull structure of ship should have sufficient strength. The fundamental task of a hull structural designer is to determine the specifications of hull structural parts such as size, material, and so on inside the hull form and the compartment. Then, to evaluate the strength of hull structure, a series of analyses are performed. If the hull structure satisfies some criteria for the strength, the hull structure is transferred to the next design step, called the detail design stage, as forms of 2D plans called hull structural plans and 3D model called hull structural model. On 14 December 2005, the Common Structural Rules for Double Hull Oil Tankers (CSR-OT) and Common Structural Rules for Bulk Carriers (CSR-BC) were unanimously adopted by the IACS (International Association of Classification Societies) Council for implementation on 1 April 2006. The Council was satisfied that these Rules were based on sound technical grounds, and achieved the goals of more robust and safer ships. These two sets of Rules were developed independently and in order to remove variations and achieve consistency, IACS decided to harmonize these Rules. There is now a single set of Rules “Common Structural Rules for Bulk Carriers and Oil Tankers” (CSR BC & OT) 2015 comprising of two parts; Part 1 gives requirements common to both bulk carriers and double hull oil tankers and Part 2 provides additional specialised requirements specific to either bulk carriers or double hull oil tankers (IACS 2015). Currently, IACS has no plans to develop CSR for container ships to follow those already developed for bulk carriers and oil tankers. This chapter describes a method of hull structural design and it is based on CSR BC & OT 2015 (IACS 2015), focusing on only oil tankers.

© Springer Nature Singapore Pte Ltd. 2018 M.-Il. Roh, K.-Y. Lee, Computational Ship Design, DOI 10.1007/978-981-10-4885-2_13

215

216

13

Hull Structural Design

There are two kinds of the assessment; strength assessment and fatigue assessment. The strength assessment means the assessment for the strength criteria excluding fatigue, for the loads corresponding to the probability level of 108, for the ballast water exchange, for harbor conditions, and for flooded conditions. The fatigue assessment means the assessment for the fatigue criteria for the loads corresponding to the probability level of 102. In this chapter, the description will be mainly focused on the strength assessment of oil tankers only based on CSR BC & OT 2015. Other explanations about the assessment of the strength of ships can be found in various references (Hughes 1983; Mansour et al. 2008).

13.1.1 Hull Structure Figure 13.1 sh