Icosahedral Galois Representations
- PDF / 7,501,036 Bytes
- 146 Pages / 461 x 684 pts Page_size
- 102 Downloads / 231 Views
		    654 Joe P. Buhler
 
 Icosahedral Galois Representations
 
 Springer-Verlag Berlin Heidelberg New York 1978
 
 Author Joe P. Buhler Mathematics Department The Pennsylvania State University University Park, PA 16802/USA
 
 Library of Congress Cataloging in Publication Data
 
 Buhler, Joe P 1950Icosahedral galois representations. (Lecture notes in mathematics; 654) Bibliography: p. Includes index. 1.
 
 Algebraic number theory.
 
 2
 
 e
 
 -
 
 Saj.o-i.s theory.
 
 3. Automorphic forms. I. Title. II. Series: Lecture notes in mathematics (Berlin) ; 654. QA3.128 no. 654 [Q,A247] 510' .Bs [512'.74] 78-9714 1SBN 0-387-08844-x
 
 AMS Subject Classifications (1970): 12A55, 12BlO, lODlO
 
 ISBN 3-540-08844-X Springer-Verlag Berlin Heidelberg New York ISBN 0-387-08844-X Springer-Verlag New York Heidelberg Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.
 
 © by Springer-Verlag Berlin Heidelberg 1978 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
 
 TABLE OF CONTENTS
 
 Introduction Chapter 1: Lifting projective representations
 
 6
 
 Chapter 2: Local primitive galois representations
 
 18
 
 Chapter 3: Two-dimensional representations over Q
 
 36
 
 Chapter 4: The L-series of an icosahedral representation
 
 49
 
 Chapter S: Classical modular forms of weight one
 
 70
 
 Chapter 6: An icosahedral form
 
 80
 
 Bibliography
 
 95
 
 Appendix 1: The sextic resolvent
 
 98
 
 Appendix 2: Extensions of Q of degree 5 .........•........••.••...••. 100 S Appendix 3: The A4 extension of Q ...••.......................•.•...•• 103 2 Appendix 4: S4 extensions of Q unramified outside 2 and 5 108 Appendix S: Algorithms
 
 115
 
 Appendix 6: Fourier expansions at arbitrary cusps
 
 125
 
 Appendix 7: The holomorphy of A L-series .•••.......•....•••••.•..•.. 132 5 Index ......••.•.....•.•........................•..........•....•.•••.. 142 TABLES 3.1: Ramified primes in AS extensions .•..•.......•......•••••.•.•.... 46 3.2: Some low icosahedral conductors ..•.••...•....••.....•••••••.... 47 3.3: Primitive extensions of Q2 . 48 . 64 4.1 : Frobenii in an AS field 4.2: Decomposition of primes in an A field •...•.••.....••••••••...• 65 5 66 4.3: Some norms ••••••..•..........•••.••.....•..•••....•.•.••••••..•• 4.4: Values of lb ••••••••••••••••••••••••••••••••••••••••••••••••••• 68 4.5: An icosahedral L-series ....•...................•...•.•..•.••... 69 5.1: Dihedral cusp forms .•..••......••...........•.......•.•••...•.. 78 S.2: Forms of weight 2 ..........•••..••...........•.......••••.•.... 79 App4.1: Some dihedral extensions of Q •.•....•••........•...•.•..••• 114 2 135 App7.1: Table of SL?CF ...•.•.........••.•......•••••••.. S) A		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	