Icosahedral Galois Representations

  • PDF / 7,501,036 Bytes
  • 146 Pages / 461 x 684 pts Page_size
  • 102 Downloads / 195 Views

DOWNLOAD

REPORT


654 Joe P. Buhler

Icosahedral Galois Representations

Springer-Verlag Berlin Heidelberg New York 1978

Author Joe P. Buhler Mathematics Department The Pennsylvania State University University Park, PA 16802/USA

Library of Congress Cataloging in Publication Data

Buhler, Joe P 1950Icosahedral galois representations. (Lecture notes in mathematics; 654) Bibliography: p. Includes index. 1.

Algebraic number theory.

2

e

-

Saj.o-i.s theory.

3. Automorphic forms. I. Title. II. Series: Lecture notes in mathematics (Berlin) ; 654. QA3.128 no. 654 [Q,A247] 510' .Bs [512'.74] 78-9714 1SBN 0-387-08844-x

AMS Subject Classifications (1970): 12A55, 12BlO, lODlO

ISBN 3-540-08844-X Springer-Verlag Berlin Heidelberg New York ISBN 0-387-08844-X Springer-Verlag New York Heidelberg Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1978 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

TABLE OF CONTENTS

Introduction Chapter 1: Lifting projective representations

6

Chapter 2: Local primitive galois representations

18

Chapter 3: Two-dimensional representations over Q

36

Chapter 4: The L-series of an icosahedral representation

49

Chapter S: Classical modular forms of weight one

70

Chapter 6: An icosahedral form

80

Bibliography

95

Appendix 1: The sextic resolvent

98

Appendix 2: Extensions of Q of degree 5 .........•........••.••...••. 100 S Appendix 3: The A4 extension of Q ...••.......................•.•...•• 103 2 Appendix 4: S4 extensions of Q unramified outside 2 and 5 108 Appendix S: Algorithms

115

Appendix 6: Fourier expansions at arbitrary cusps

125

Appendix 7: The holomorphy of A L-series .•••.......•....•••••.•..•.. 132 5 Index ......••.•.....•.•........................•..........•....•.•••.. 142 TABLES 3.1: Ramified primes in AS extensions .•..•.......•......•••••.•.•.... 46 3.2: Some low icosahedral conductors ..•.••...•....••.....•••••••.... 47 3.3: Primitive extensions of Q2 . 48 . 64 4.1 : Frobenii in an AS field 4.2: Decomposition of primes in an A field •...•.••.....••••••••...• 65 5 66 4.3: Some norms ••••••..•..........•••.••.....•..•••....•.•.••••••..•• 4.4: Values of lb ••••••••••••••••••••••••••••••••••••••••••••••••••• 68 4.5: An icosahedral L-series ....•...................•...•.•..•.••... 69 5.1: Dihedral cusp forms .•..••......••...........•.......•.•••...•.. 78 S.2: Forms of weight 2 ..........•••..••...........•.......••••.•.... 79 App4.1: Some dihedral extensions of Q •.•....•••........•...•.•..••• 114 2 135 App7.1: Table of SL?CF ...•.•.........••.•......•••••••.. S) A