Identification of two novel pathogenic variants of PIBF1 by whole exome sequencing in a 2-year-old boy with Joubert synd

  • PDF / 2,054,521 Bytes
  • 6 Pages / 595.276 x 790.866 pts Page_size
  • 52 Downloads / 159 Views

DOWNLOAD

REPORT


CASE REPORT

Open Access

Identification of two novel pathogenic variants of PIBF1 by whole exome sequencing in a 2-year-old boy with Joubert syndrome Yue Shen1,2†, Hao Wang3†, Zhimin Liu4†, Minna Luo1,2, Siyu Ma1,2, Chao Lu1,2, Zongfu Cao1,2, Yufei Yu1,2, Ruikun Cai1,2, Cuixia Chen1,2, Qian Li1,2, Huafang Gao1,2, Yun Peng4, Baoping Xu3* and Xu Ma1,2*

Abstract Background: Joubert syndrome (OMIM 213300) is an autosomal recessive disorder with gene heterogeneity. Causal genes and their variants have been identified by sequencing or other technologies for Joubert syndrome subtypes. Case presentation: A two-year-old boy was diagnosed with Joubert syndrome by global development delay and molar tooth sign of mid-brain. Whole exome sequencing was performed to detect the causative gene variants in this individual, and the candidate pathogenic variants were verified by Sanger sequencing. We identified two pathogenic variants (NM_006346.2: c.1147delC and c.1054A > G) of PIBF1 in this Joubert syndrome individual, which is consistent with the mode of autosomal recessive inheritance. Conclusion: In this study, we identified two novel pathogenic variants in PIBF1 in a Joubert syndrome individual using whole exome sequencing, thereby expanding the PIBF1 pathogenic variant spectrum of Joubert syndrome. Keywords: PIBF1, Joubert syndrome, Cerebellar vermis hypoplasia, Whole exome sequencing

Background Joubert syndrome (OMIM: 213300) is an autosomal recessive disorder characterized by a specific midhindbrain malformation, hypotonia and developmental delay/intellectual impairment [1]. Molar tooth sign of mid-brain is a diagnostic standard for Joubert syndrome [2]. As Joubert syndrome is a genetically heterogeneous disease, causal genes and their variants have been identified with improved sequencing technologies. Individuals with Joubert syndrome have * Correspondence: [email protected]; [email protected] † Yue Shen, Hao Wang and Zhimin Liu contributed equally to this work. 3 China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China 1 National Research Institute for Family Planning, Beijing, China Full list of author information is available at the end of the article

many of the clinical features of ciliopathies [3], and many ciliary/basal body genes and variants have been discovered to be associated with Joubert syndrome [4, 5]. Joubert syndrome 33 (JBTS33) is caused by PIBF1. Wheway et al. first identified 4 variants or deletions in the PIBF1 gene associated with Joubert syndrome from Hutterite families and other families [6]. A homozygous 36-bp insertion in PIBF1 (c.1181_ 1182ins36) in a Joubert syndrome family has been reported by Hebbar M. et al. [7]. Moreover, Ott T. et al. found a compound heterozygote (c.1453C > T and c.1508A > G) in a German patient [8]. In this study, we identified two novel pathogenic variants on PIBF1 in a Joubert syndrome individual using whole exome sequen