Improving bimanual interaction with a prosthesis using semi-autonomous control

  • PDF / 1,695,723 Bytes
  • 13 Pages / 595.276 x 790.866 pts Page_size
  • 1 Downloads / 224 Views

DOWNLOAD

REPORT


(2019) 16:140

RESEARCH

Open Access

Improving bimanual interaction with a prosthesis using semi-autonomous control Robin Volkmar1, Strahinja Dosen2, Jose Gonzalez-Vargas3, Marcus Baum4 and Marko Markovic1*

Abstract Background: The loss of a hand is a traumatic experience that substantially compromises an individual’s capability to interact with his environment. The myoelectric prostheses are state-of-the-art (SoA) functional replacements for the lost limbs. Their overall mechanical design and dexterity have improved over the last few decades, but the users have not been able to fully exploit these advances because of the lack of effective and intuitive control. Bimanual tasks are particularly challenging for an amputee since prosthesis control needs to be coordinated with the movement of the sound limb. So far, the bimanual activities have been often neglected by the prosthetic research community. Methods: We present a novel method to prosthesis control, which uses a semi-autonomous approach in order to simplify bimanual interactions. The approach supplements the commercial SoA two-channel myoelectric control with two additional sensors. Two inertial measurement units were attached to the prosthesis and the sound hand to detect the movement of both limbs. Once a bimanual interaction is detected, the system mimics the coordination strategies of able-bodied subjects to automatically adjust the prosthesis wrist rotation (pronation, supination) and grip type (lateral, palmar) to assist the sound hand during a bimanual task. The system has been evaluated in eight able-bodied subjects performing functional uni- and bi-manual tasks using the novel method and SoA two-channel myocontrol. The outcome measures were time to accomplish the task, semi-autonomous system misclassification rate, subjective rating of intuitiveness, and perceived workload (NASA TLX). Results: The results demonstrated that the novel control interface substantially outperformed the SoA myoelectric control. While using the semi-autonomous control the time to accomplish the task and the perceived workload decreased for 25 and 27%, respectively, while the subjects rated the system as more intuitive then SoA myocontrol. Conclusions: The novel system uses minimal additional hardware (two inertial sensors) and simple processing and it is therefore convenient for practical implementation. By using the proposed control scheme, the prosthesis assists the user’s sound hand in performing bimanual interactions while decreasing cognitive burden. Keywords: Myoelectric prosthesis, Myocontrol, Bimanual interactions, Inertial sensing, Sensor-fusion, Semi-autonomous control

Introduction The human hands are essential tools for many activities of daily living (ADL). They are capable of dexterous yet reliable manipulation, firm grasping, and are instrumental for haptic exploration of the environment and social communication. Unfortunately, hand amputations are estimated to occur 18,496 times each year and an estimated total of 541,000 humans are affected by upper limb