Influence of a Twisting-Helical Disturber on Nanofluid Turbulent Forced Convection
The purpose of this chapter is to examine the impacts of using a complex-shape of flow disturber on the heat transportation from a nanofluid (water-copper oxide) with a forced convection within a pipe. For this, the FVM is implemented to model behavior of
- PDF / 932,709 Bytes
- 20 Pages / 439.37 x 666.142 pts Page_size
- 109 Downloads / 229 Views
Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Geometry and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Abstract
The purpose of this chapter is to examine the impacts of using a complex-shape of flow disturber on the heat transportation from a nanofluid (water-copper oxide) with a forced convection within a pipe. For this, the FVM is implemented to model behavior of nanomaterial within a pipe and the specially designed flow disturber. Through the numerical simulations, the uniform concentration of nanomaterial has been assumed in whole domain. The study, particularly, investigates the impact of the height of the flow device blade and the Reynolds number on the M. Sheikholeslami (*) Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Islamic Republic of Iran Renewable Energy Systems and Nanofluid Applications in Heat Transfer Laboratory, Babol Noshirvani University of Technology, Babol, Iran e-mail: [email protected] M. Jafaryar Renewable Energy Systems and Nanofluid Applications in Heat Transfer Laboratory, Babol Noshirvani University of Technology, Babol, Iran A. Arabkoohsar Department of Energy Technology, Aalborg University, Aalborg, Denmark A. Shafee (*) Institute of Research and Development, Duy Tan University, Da Nang, Vietnam e-mail: [email protected] © Springer Nature Switzerland AG 2020 O. V. Kharissova et al. (eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, https://doi.org/10.1007/978-3-030-11155-7_85-1
1
2
M. Sheikholeslami et al.
Nu as thermal coefficient index and the Darcy factor. The outputs demonstrate that a more turbulence regime, and consequently a better Nu, may be achieved as the height of disturber and pumping power come up. Finally, utilizing the results obtained from the simulations, two formulas have been established for the f and Nu and parameters as functions of the understudy variables, i.e., Reynolds number and the flow disturber height. Keyword
Flow disturber · Nanofluid · Heat transfer · Pressure loss · Nusselt number
Introduction While not all the heat and mass transfer systems are suitable for an additives, employing nanofluids is many other applications is the pr
Data Loading...