Influence of Steel Fiber Addition on the Vibrational Characteristic of High Strength Cementitious Composites

  • PDF / 1,241,631 Bytes
  • 9 Pages / 595.276 x 790.866 pts Page_size
  • 74 Downloads / 224 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE-CIVIL ENGINEERING

Influence of Steel Fiber Addition on the Vibrational Characteristic of High Strength Cementitious Composites Mehmet Alper Sofuoglu ˘ 1

· Fatih Hayati Çakır2

· Serhat Çelikten3

Received: 1 September 2020 / Accepted: 31 October 2020 © King Fahd University of Petroleum & Minerals 2020

Abstract Structural materials and their properties in different applications with next-generation composite production techniques are quite promising areas. In this study, new composite blocks were produced with the addition of industrial and recycled steel fibers to high strength cementitious composites (HSCCs). The vibrational damping capabilities of the blocks produced in standard dimensions (16 cm × 4 cm × 4 cm) were tested by using the modal analysis method. In many different applications, structural materials are expected to absorb vibrations such as earthquakes or artificial vibrations from machine systems operating in industrial areas. In this study, the vibration damping capability of HSCCs was investigated and improved by adding steel fiber to HSCCs. The experimental study shows that adding steel fibers improves the bending stress by up to 127% and damping ratio over 200%. The fiber size and distribution play a significant role in this improvement. This effect was also achieved to a certain extent in the samples produced using recycled steel fibers obtained from waste tires. In this way, the vibration damping ability of the HSCCs is increased with an environmentally friendly approach. Keywords Modal analysis · Recycled steel fiber · Industrial steel fiber · Vibration damping · Composite material

1 Introduction Composite materials are developed for many different applications and give promising results with hybrid applications that combine the materials’ superior properties. Cementbased composites, which are of a composite structure by their nature, are indispensable materials for building materials with low cost and high strength. However, cementitious composites are brittle and have low vibration damping ability. One of the methods used to overcome these disadvantages

B

Mehmet Alper Sofuo˘glu [email protected] https://www.researchgate.net/profile/Alper_Sofuoglu Fatih Hayati Çakır [email protected] Serhat Çelikten [email protected]

1

Department of Mechanical Engineering, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey

2

Eski¸sehir Vocational School, Eskisehir Osmangazi University, Eski¸sehir, Turkey

3

Department of Civil Engineering, Nev¸sehir Hacı Bekta¸s Veli University, 50300 Nevsehir, Turkey

is to reinforce with fibers to these materials. Some of these incorporated fibers are preferred for performance improvement, although they are costly, while others are used to recover residual or secondary products [1–3]. Besides, the distribution, diameter, aspect ratio, and length of the fiber used in the cementitious composite significantly affect the composites’ flexural strength and fracture behavior [4–6] and shear resistance [7]. In particular, even when the com