Integrability of Point-Vortex Dynamics via Symplectic Reduction: A Survey

  • PDF / 1,999,479 Bytes
  • 29 Pages / 439.37 x 666.142 pts Page_size
  • 49 Downloads / 173 Views

DOWNLOAD

REPORT


Integrability of Point-Vortex Dynamics via Symplectic Reduction: A Survey Klas Modin1

· Milo Viviani1

Received: 8 May 2020 / Revised: 14 September 2020 / Accepted: 28 September 2020 © The Author(s) 2020

Abstract Point-vortex dynamics describe idealized, non-smooth solutions to the incompressible Euler equations on two-dimensional manifolds. Integrability results for few pointvortices on various domains is a vivid topic, with many results and techniques scattered in the literature. Here, we give a unified framework for proving integrability results for N = 2, 3, or 4 point-vortices (and also more general Hamiltonian systems), based on symplectic reduction theory. The approach works on any two-dimensional manifold with a symmetry group; we illustrate it on the sphere, the plane, the hyperbolic plane, and the flat torus. A systematic study of integrability is prompted by advances in twodimensional turbulence, bridging the long-time behaviour of 2D Euler equations with questions of point-vortex integrability. A gallery of solutions is given in the appendix. Keywords Point-vortex dynamics · Integrable systems · Euler equations · Symplectic reduction Mathematics Subject Classification 37J15 · 53D20 · 70H06 · 35Q31 · 76B47

Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . 2 Point-Vortex Equations and Their Conservation Laws 2.1 The Sphere . . . . . . . . . . . . . . . . . . . . 2.2 The Plane . . . . . . . . . . . . . . . . . . . . . 2.3 The Hyperbolic Plane . . . . . . . . . . . . . . . 2.4 The Flat Torus . . . . . . . . . . . . . . . . . . . 3 Integrability Results . . . . . . . . . . . . . . . . . .

B

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

2 4 5 7 10 11 12

Klas Modin [email protected] Milo Viviani [email protected]

1

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96 Gothenburg, Sweden

123

K. Modin, M. Viviani 3.1 The Sphere . . . . . . . . . . . . . . . . . . . . . 3.2 The Plane . . . . . . . . . . . . . . . . . . . . . . 3.3 The Hyperbolic Plane . . . . . . . . . . . . . . . . 3.4 The Flat Torus . . . . . . . . . . . . . . . . . . . . 4 Symplectic Reduction Theory . . . . . . . . . . . . . . 5 Proofs by Symplectic Reduction . . . . . . . . . . . . . 5.1 The Sphere . . . . . . . . . . . . . . . . . . . . . 5.2 The Plane . . . . . . . . . . . . . . . . . . . . . . 5.3 The Hyperbolic Plane . . . . . . . . . . . . . . . . 5.4 The Flat Torus . . . . . . . . . . . . . . . . . . . . 6 Non-integrability Results . . . . . . . . . . . . . . . . 7 Outlook: Long-Time Predictions for 2D Euler Equations Appendix A: Gallery of point-vortex solutions . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .