Introduction to Micro/Nanofabrication

In this chapter, we discuss various micro/nanofabrication micro/nanofabrication techniques used to manufacture structures in a wide range of dimensions (mm–nm). Starting with some of the most common microfabrication techniques (lithography, deposition, an

  • PDF / 4,039,124 Bytes
  • 38 Pages / 547.146 x 686 pts Page_size
  • 21 Downloads / 180 Views

DOWNLOAD

REPORT


Introduction t

Recent innovations in the area of micro/nanofabrication have created a unique opportunity for manufacturing structures in the nanometer–millimeter range. The available six orders of magnitude dimensional span can be used to fabricate novel electronic, optical, magnetic, mechanical, and chemical/biological devices with applications ranging from sensors to computation and control. In this chapter, we will introduce major micro/nanofabrication techniques currently used to fabricate structures in the nanometer to several hundred

5.1

Basic Microfabrication Techniques.......... 5.1.1 Lithography ................................. 5.1.2 Thin Film Deposition and Doping ... 5.1.3 Etching and Substrate Removal ...... 5.1.4 Substrate Bonding........................

148 148 149 153 157

5.2

MEMS Fabrication Techniques ................ 5.2.1 Bulk Micromachining .................... 5.2.2 Surface Micromachining ................ 5.2.3 High-Aspect-Ratio Micromachining

159 159 163 166

5.3

Nanofabrication Techniques .................. 5.3.1 E-Beam and Nano-Imprint Fabrication....... 5.3.2 Epitaxy and Strain Engineering ...... 5.3.3 Scanned Probe Techniques ............ 5.3.4 Self-Assembly and Template Manufacturing.........

170 171 172 173 176

References .................................................. 180

potentially superior techniques such as strain engineering, self-assembly, and nano-imprint lithography. Among these, self-assembly is the most promising method, due to its low cost and the ability to produce nanostructures at different length scales.

micrometer range. We will focus mainly on the most important and widely used techniques and will not discuss specialized methods. After a brief introduction to basic microfabrication, we will discuss MEMSfabrication techniques used to build microstructures down to about 1 µm in dimensions. Following this, we will discuss several major top-down and bottomup nanofabrication methods that have shown great promise in manufacturing nanostructures (dimensions < 1 µm).

Part A 5

In this chapter, we discuss various micro/ nanofabrication techniques used to manufacture structures in a wide range of dimensions (mm–nm). Starting with some of the most common microfabrication techniques (lithography, deposition, and etching), we present an array of micromachining and MEMS technologies that can be used to fabricate microstructures down to ∼ 1 µm. These techniques have attained an adequate level of maturity to allow for a variety of MEMS-based commercial products (pressure sensors, accelerometers, gyroscopes, etc.). More recently, nanometer-sized structures have attracted an enormous amount of interest. This is mainly due to their unique electrical, magnetic, optical, thermal, and mechanical properties. These could lead to a variety of electronic, photonic, and sensing devices with a superior performance compared to their macro counterparts. Subsequent to our discussion on MEMS and micromachining, we present several important nanofabrication techniques currently under in