Intruder (DD38E), a recently evolved sibling family of DD34E/ Tc1 transposons in animals

  • PDF / 3,880,969 Bytes
  • 15 Pages / 595.276 x 790.866 pts Page_size
  • 36 Downloads / 187 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals Bo Gao1,2†, Wencheng Zong1†, Csaba Miskey2, Numan Ullah1, Mohamed Diaby1, Cai Chen1, Xiaoyan Wang1, Zoltán Ivics2 and Chengyi Song1*

Abstract Background: A family of Tc1/mariner transposons with a characteristic DD38E triad of catalytic amino acid residues, named Intruder (IT), was previously discovered in sturgeon genomes, but their evolutionary landscapes remain largely unknown. Results: Here, we comprehensively investigated the evolutionary profiles of ITs, and evaluated their cut-and-paste activities in cells. ITs exhibited a narrow taxonomic distribution pattern in the animal kingdom, with invasions into two invertebrate phyla (Arthropoda and Cnidaria) and three vertebrate lineages (Actinopterygii, Agnatha, and Anura): very similar to that of the DD36E/IC family. Some animal orders and species seem to be more hospitable to Tc1/mariner transposons, one order of Amphibia and seven Actinopterygian orders are the most common orders with horizontal transfer events and have been invaded by all four families (DD38E/IT, DD35E/TR, DD36E/IC and DD37E/TRT) of Tc1/mariner transposons, and eight Actinopterygii species were identified as the major hosts of these families. Intact ITs have a total length of 1.5–1.7 kb containing a transposase gene flanked by terminal inverted repeats (TIRs). The phylogenetic tree and sequence identity showed that IT transposases were most closely related to DD34E/Tc1. ITs have been involved in multiple events of horizontal transfer in vertebrates and have invaded most lineages recently (< 5 million years ago) based on insertion age analysis. Accordingly, ITs presented high average sequence identity (86–95%) across most vertebrate species, suggesting that some are putatively active. ITs can transpose in human HeLa cells, and the transposition efficiency of consensus TIRs was higher than that of the TIRs of natural isolates. Conclusions: We conclude that DD38E/IT originated from DD34E/Tc1 and can be detected in two invertebrate phyla (Arthropoda and Cnidaria), and in three vertebrate lineages (Actinopterygii, Agnatha and Anura). IT has experienced multiple HT events in animals, dominated by recent amplifications in most species and has high identity among vertebrate taxa. Our reconstructed IT transposon vector designed according to the sequence from the “cat” genome showed high cut-and-paste activity. The data suggest that IT has been acquired recently and is active in many species. This study is meaningful for understanding the evolution of the Tc1/mariner superfamily members and their hosts. Keywords: Intruder, Tc1/mariner transposons, DD38E, Horizontal transfer, Evolution

* Correspondence: [email protected] † Bo Gao and Wencheng Zong contributed equally to this work. 1 College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, Jiangsu, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Acc