Kato's Type Inequalities for Bounded Linear Operators in Hilbert Spaces
The aim of this book is to present results related to Kato's famous inequality for bounded linear operators on complex Hilbert spaces obtained by the author in a sequence of recent research papers. As Linear Operator Theory in Hilbert spaces plays a centr
- PDF / 1,518,550 Bytes
- 134 Pages / 439.371 x 666.143 pts Page_size
- 100 Downloads / 278 Views
Silvestru Sever Dragomir
Kato’s Type Inequalities for Bounded Linear Operators in Hilbert Spaces
SpringerBriefs in Mathematics Series Editors Nicola Bellomo, Torino, Italy Michele Benzi, Pisa, Italy Palle Jorgensen, Iowa City, IA, USA Tatsien Li, Shanghai, China Roderick Melnik, Waterloo, ON, Canada Otmar Scherzer, Linz, Austria Benjamin Steinberg, New York City, NY, USA Lothar Reichel, Kent, USA Yuri Tschinkel, New York City, NY, USA George Yin, Detroit, MI, USA Ping Zhang, Kalamazoo, MI, USA Editorial Board Luis Gustavo Nonato, São Carlos, Rio Grande do Sul, Brazil Paulo J. S. Silva, Campinas, São Paulo, Brazil
SpringerBriefs in Mathematics showcases expositions in all areas of mathematics and applied mathematics. Manuscripts presenting new results or a single new result in a classical field, new field, or an emerging topic, applications, or bridges between new results and already published works, are encouraged. The series is intended for mathematicians and applied mathematicians.
More information about this series at http://www.springer.com/series/10030
SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules. Typical topics might include: • A timely report of state-of-the art techniques • A bridge between new research results, as published in journal articles, and a contextual literature review • A snapshot of a hot or emerging topic • An in-depth case study • A presentation of core concepts that students must understand in order to make independent contributions Titles from this series are indexed by Web of Science, Mathematical Reviews, and zbMATH.
Silvestru Sever Dragomir
Kato’s Type Inequalities for Bounded Linear Operators in Hilbert Spaces
123
Silvestru Sever Dragomir Department of Mathematics, College of Engineering and Science Victoria University Melbourne, VIC, Australia School of Computer Science and Applied Mathematics, DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences University of the Witwatersrand Johannesburg, South Africa
ISSN 2191-8198 ISSN 2191-8201 (electronic) SpringerBriefs in Mathematics ISBN 978-3-030-17458-3 ISBN 978-3-030-17459-0 (eBook) https://doi.org/10.1007/978-3-030-17459-0 Mathematics Subject Classification (2010): 47A63, 47A50, 47A99 © The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
Data Loading...