Laser Synthesis of Colloids: Applications
In recent years, laser synthesis and processing of colloids (LSPC) has become a method for the scalable and continuous synthesis of size-controlled nanomaterials. Within this section of the book, the utilization of LSPC-generated nanoparticles in applicat
- PDF / 959,863 Bytes
- 25 Pages / 439.37 x 666.142 pts Page_size
- 81 Downloads / 216 Views
Contents Laser-Generated Nanoparticles for Biomedical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Nanobioconjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Nano-coated Surfaces in Biomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Laser Nano-engineering in Heterogeneous Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Laser-Generated Nanoparticles in Laser Additive Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Abstract
In recent years, laser synthesis and processing of colloids (LSPC) has become a method for the scalable and continuous synthesis of size-controlled nanomaterials. Within this section of the book, the utilization of LSPC-generated nanoparticles in applications will be summarized. The most important features of laser-generated nanoparticles are their high-purity, surfactant-free surface and homogenous alloy formation with the former enabling a large potential as toxicity reference material, while the latter allows gradual compositional studies of catalytic activity. Here, the high purity surface and solely electrostatic colloidal stabilization guarantees high adsorption efficiency and hence independent tunability of particle size, load, and composition. This flexibility concerning B. Gökce · C. Rehbock · V. Ramesh · T. Hupfeld · S. Reichenberger · S. Barcikowski (*) Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] S. Kohsakowski Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany Department Electrochemistry & Coating, The Hydrogen and Fuel Cell Center (ZBT), Duisburg, Germany e-mail: [email protected] © Springer Nature Switzerland AG 2020 K. Sugioka (ed.), Handbook of Laser Micro- and Nano-Engineering, https://doi.org/10.1007/978-3-319-69537-2_31-1
1
B. Go¨kce et al.
2
materials’ properties lays the foundation for the high relevance of LSPC in the main applicatory research sectors discussed in this chapter, namely, biomedicine, catalysis, and additive manufacturing. Herein, we summarize selected applications in the aforementioned fields in which the advantages of using LSPC-derived nanoparticles are most striking.
Laser-Generated Nanoparticles for Biomedical Applications Nanoparticles, particularly those composed of noble metals, exhibit a broad range of possible applications in the
Data Loading...