Logics with Transitive Accessibility Relations
This chapter is about the model construction problem in classes of models satisfying the constraint of transitivity. We present the modal logics of the class of models where the accessibility relation is transitive (K4), transitive and serial (KD4), and t
- PDF / 3,190,475 Bytes
- 208 Pages / 477 x 684 pts Page_size
- 104 Downloads / 194 Views
Olivier Gasquet Andreas Herzig Bilal Said François Schwarzentruber
Kripke’s Worlds An Introduction to Modal Logics via Tableaux
Studies in Universal Logic
Series Editor Jean-Yves Béziau (Federal University of Rio de Janeiro and Brazilian Research Council, Rio de Janeiro, Brazil) Editorial Board Members Hajnal Andréka (Hungarian Academy of Sciences, Budapest, Hungary) Mark Burgin (University of California, Los Angeles, USA) R˘azvan Diaconescu (Romanian Academy, Bucharest, Romania) Josep Maria Font (University of Barcelona, Barcelona, Spain) Andreas Herzig (Centre National de la Recherche Scientifique, Toulouse, France) Arnold Koslow (City University of New York, New York, USA) Jui-Lin Lee (National Formosa University, Huwei Township, Taiwan) Larissa Maksimova (Russian Academy of Sciences, Novosibirsk, Russia) Grzegorz Malinowski (University of Łód´z, Łód´z, Poland) Darko Sarenac (Colorado State University, Fort Collins, USA) Peter Schröder-Heister (University Tübingen, Tübingen, Germany) Vladimir Vasyukov (Russian Academy of Sciences, Moscow, Russia)
This series is devoted to the universal approach to logic and the development of a general theory of logics. It covers topics such as global set-ups for fundamental theorems of logic and frameworks for the study of logics, in particular logical matrices, Kripke structures, combination of logics, categorical logic, abstract proof theory, consequence operators, and algebraic logic. It includes also books with historical and philosophical discussions about the nature and scope of logic. Three types of books will appear in the series: graduate textbooks, research monographs, and volumes with contributed papers.
Olivier Gasquet r Andreas Herzig r Bilal Said François Schwarzentruber
Kripke’s Worlds An Introduction to Modal Logics via Tableaux
r
Olivier Gasquet Institut de Recherche en Informatique de Toulouse (IRIT) Université Paul Sabatier Toulouse, France
Bilal Said Institut de Recherche en Informatique de Toulouse (IRIT) Université Paul Sabatier Toulouse, France
Andreas Herzig Institut de Recherche en Informatique de Toulouse (IRIT) Université Paul Sabatier Toulouse, France
François Schwarzentruber Institut de Recherche en Informatique de Toulouse (IRIT) Université Paul Sabatier Toulouse, France
ISBN 978-3-7643-8503-3 ISBN 978-3-7643-8504-0 (eBook) DOI 10.1007/978-3-7643-8504-0 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2013955232 Mathematics Subject Classification (2010): 03-XX, 03B42, 03B44, 03B45 © Springer Basel AG 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation
Data Loading...