Mathematical Background of Deterministic Fractals

The historical backdrop of describing natural objects by mathematics, with respect to Euclidean geometry, is as old as the advent of science itself. In our intuitive understanding, traditionally lines, squares, rectangles, circles, spheres, and so forth h

  • PDF / 6,574,448 Bytes
  • 140 Pages / 453.543 x 683.15 pts Page_size
  • 36 Downloads / 188 Views

DOWNLOAD

REPORT


Santo Banerjee D. Easwaramoorthy A. Gowrisankar

Fractal Functions, Dimensions and Signal Analysis

Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems— cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and computer science. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets and of the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in social systems, to name just some of the popular applications. Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence. The three major book publication platforms of the Springer Complexity program are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological foundations, and the “Springer Briefs in Complexity” which are concise and topical working reports, case studies, surveys, essays and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works.

Indexed by SCOPUS, INSPEC, zbMATH, SCImago. Series Editors Henry D. I. Abarbanel, Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA, USA Dan Braha, New England Complex Systems Institute, University of Massachusetts, Dartmouth, USA Péter Érdi, Center for Complex Systems Studies, Kalamazoo College, Kalamazoo, USA; Hungarian Academy of Sciences, Budapest, Hungary Karl J. Friston, Institute of Cognitive Neuroscience, University College London, London, UK Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca