Mathematics for Ecology and Environmental Sciences
Dynamical systems theory in mathematical biology has attracted much attention from many scientific directions. The purpose of this volume is to discuss the many rich and interesting properties of dynamical systems that appear in ecology and environmental
- PDF / 2,880,594 Bytes
- 189 Pages / 439.378 x 666.139 pts Page_size
- 56 Downloads / 206 Views
biological and medical physics, biomedical engineering The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological and Medical Physics, Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information. Books in the series emphasize established and emergent areas of science including molecular, membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering.
Editor-in-Chief: Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Editorial Board:
Sol M. Gruner, Department of Physics, Princeton University, Princeton, New Jersey, USA Judith Herzfeld, Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
Pierre Joliot, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
Olaf S. Andersen, Department of Physiology, Biophysics & Molecular Medicine, Cornell University, New York, USA
Lajos Keszthelyi, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
Robert H. Austin, Department of Physics, Princeton University, Princeton, New Jersey, USA
Robert S. Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
James Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England
Aaron Lewis, Department of Applied Physics, Hebrew University, Jerusalem, Israel
Howard C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA Victor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA Robert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA Britton Chance, Department of Biochemistry/ Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA Steven Chu, Department of Physics, Stanford University, Stanford, California, USA Louis J. DeFelice, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA Johann Deisenhofer, Howard Hughes Medical Institute, The University of Texas, Dallas, Texas, USA George Feher, Department of Physics, Univer
Data Loading...