Measurement of the Cross Section for the Process $$\boldsymbol{e^{+}e^{-}\to K^{+}K^{-}}$$ with the CMD-3 Detector

  • PDF / 1,215,837 Bytes
  • 7 Pages / 612 x 792 pts (letter) Page_size
  • 97 Downloads / 176 Views

DOWNLOAD

REPORT


EMENTARY PARTICLES AND FIELDS Experiment

Measurement of the Cross Section for the Process e+e− → K +K − with the CMD-3 Detector V. L. Ivanov1),2)* (on behalf of the CMD-3 collaboration) Received May 5, 2020; revised May 5, 2020; accepted May 5, 2020

Abstract—Preliminary results of measurement of the cross section for the process e+ e− → K + K − in the range of c.m. energies between 1.075 and 1.975 GeV are presented. An analysis was performed on the basis of an integrated luminosity of 62.9 pb−1 accumulated by employing the CMD-3 detector within the experimental runs of 2019. The suppression of the background from the processes e+ e− → e+ e− (γ), μ+ μ− (γ), and π + π − (γ) and the background of cosmic-ray muons was accomplished with the aid of information about specific energy losses of charged particles in the layers of the liquid xenon calorimeter of the CMD-3 detector. The preliminary results of the present measurement of the e+ e− → K + K − cross section are in reasonable agreement with the results of earlier measurements and have a commensurate statistical precision. DOI: 10.1134/S1063778820050142

INTRODUCTION e+ e−

anExperimental data on cross sections for nihilation to hadrons are necessary for calculating the CMD-3 collaboration: R. R. Akhmetshin1),2) , 1),2) A. N. Amirkhanov , A. V. Anisenkov1),2) , V. M. Aulchenko1),2) , V. Sh. Banzarov1) , N. S. Bashtovoy1) , D. E. Berkaev1),2) , A. E. Bondar1),2) , A. V. Bragin1) , A. I. Vorobiov1) , S. E. Gayazov1),2) , A. A. Grebenuk1),2) , S. S. Gribanov1),2) , D. N. Grigoriev1),2),4) , 1) 1),2) , F. V. Ignatov1) , D. A. Epifanov , A. L. Erofeev 1) 1),2) S. V. Karpov , V. F. Kazanin , A. N. Kozyrev1) , 1),2) 1),2) , I. A. Koop , A. A. Korobov1),2) , E.A.Kozyrev 1),2) 1),2) , A. S. Kuzmin , I. B. Logashenko1),2) , P. P. Krokovny 1),2) 1),2) P. A. Lukin , K. Yu. Mikhailov , V. S. Okhapkin1) , 1) 1),2) , G. P. Razuvaev2) , Yu. N. Pestov , A. S. Popov 1) 1),2) A. A. Ruban , A. E. Ryzhenenkov , N. M. Ryskulov1) , 1),2) 4) , A. L. Sibidanov , E. P. Solodov1),2) , A. V. Semenov 1),2) A. A. Talyshev , V. M. Titov1) , S. S. Tolmachev1),2) , 1),2) A. A. Uskov , G. V. Fedotovich1),2) , V. E. Shebalin1),2) , 1),2) B. A. Shwartz , D. B. Shwartz1),2) , Yu. M. Shatunov1) , S. I. Eidelman2),1),5) , L. B. Epstein1),3) , Yu. V. Yudin1) . 1)

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia. 2) Novosibirsk National Research State University (NSU), Novosibirsk, 630090 Russia. 3) Novosibirsk State Technical University (NSTU), Novosibirsk, 630073 Russia. 4) Victoria University, Victoria, Canada. 5) Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia. ∗

E-mail: [email protected]

hadron contribution to the muon anomalous magnetic moment (g − 2)μ . The observed difference at a level of ∼3.5σ between the calculated [1–4] and experimentally measured [5] values of (g − 2)μ requires measuring the aforementioned cross sections more precisely. In this article, we present preliminary results of the mea