Mechanical Characterisation of the NiTi Shape Memory Alloy for Microfluidic Valve Applications
- PDF / 2,163,430 Bytes
- 6 Pages / 612 x 792 pts (letter) Page_size
- 76 Downloads / 209 Views
Mechanical Characterisation of the NiTi Shape Memory Alloy for Microfluidic Valve Applications Alistair M. Waddell1, 2, Jeff Punch1, 2, Walter Stanley3, Nicholas Jeffers 4, and Jason Stafford4 1 Stokes Institute, University of Limerick, Castletroy, Limerick, Ireland. 2 CTVR, Trinity College Dublin, Dublin, Co. Dublin, Ireland. 3 Irish Centre for Composites Research (IComp), University of Limerick, Castletroy, Limerick, Ireland. 4 Bell Labs Ireland, Thermal Management Research Group, Alcatel-Lucent, Blanchardstown, Co. Dublin, Ireland. ABSTRACT Photonics Integrated Circuits (PICs) are being applied by the telecommunications industry as transceivers for fibre optic networks. The core component of a typical PIC is the laser array and these devices can have relatively low operating temperatures (15°C - 25°C) with a tight operating range (±0.1K). To accommodate such a specification, a thermal control system is required that can change the cooling rate through feedback. The power density of next generation PICs is at such a level to demand novel thermal management architectures including developments such as near source liquid cooling. In order to control the thermal performance of fluidic devices, effective methods for varying the rate of coolant are an essential component. Consequently, micro-valve structures are required, ideally involving passive actuation to meet stringent reliability standards. One solution to this challenge is to exploit the phase-change driven shape memory effect of the NiTi Shape Memory Alloy (SMA). A micro-valve could be developed from the NiTi SMA, thermally coupled to the laser array component in order to work passively to regulate the flow of coolant in a micro-channel. Such a valve would have to be intrinsically reliable, and the goal of this paper is to investigate the conditions that will affect this reliability. The objective of the work is to investigate the mechanical properties relevant to the design of a passive NiTi SMA micro-valve, with a focus on the formation of stress-induced Martensite bands. It is not understood why these bands form on a plane inclined at ~55° to the axis of loading and in this paper theory is presented that suggests a reasoning for this. A plate sample of NiTi was tested in uni-axial tension and Digital Image Correlation (DIC) used to analyse the strain fields across the surface of the sample. The DIC results revealed areas of high stress concentrations occurring in bands inclined on average 53.86° to the axis of loading. The theory and experimental observations are in agreement with the literature but to validate the theory the crystal texture needs to be analysed in the stress concentration regions. This paper provides valuable insight into the mechanical behaviour of a passive NiTi SMA micro-valve subjected to a sufficient pressure to form stress-induced Martensite. INTRODUCTION For telecommunications applications, Photonics Integrated Circuits (PICs) are currently under development in order to thermally enable devices such as optical transmitters and recei
Data Loading...