Mechanics of Polymers: Viscoelasticity
With the heavy influx of polymers into engineering designs their special, deformation-rate-sensitive properties require particular attention. Although we often refer to them as time-dependent materials, their properties really do not depend on time, but t
- PDF / 2,788,738 Bytes
- 47 Pages / 547.087 x 685.984 pts Page_size
- 62 Downloads / 214 Views
Mechanics of 3. Mechanics of Polymers: Viscoelasticity
Wolfgang G. Knauss, Igor Emri, Hongbing Lu
3.1
3.2
Historical Background ........................... 3.1.1 The Building Blocks of the Theory of Viscoelasticity ..........................
49
Linear Viscoelasticity ............................. 3.2.1 A Simple Linear Concept: Response to a Step-Function Input .............. 3.2.2 Specific Constitutive Responses (Isotropic Solids) .......................... 3.2.3 Mathematical Representation of the Relaxation and Creep Functions 3.2.4 General Constitutive Law for Linear and Isotropic Solid: Poisson Effect .. 3.2.5 Spectral and Functional Representations ...........................
51
3.2.6 Special Stress or Strain Histories Related to Material Characterization 3.2.7 Dissipation Under Cyclical Deformation............ 3.2.8 Temperature Effects ...................... 3.2.9 The Effect of Pressure on Viscoelastic Behavior of Rubbery Solids ......................... 3.2.10 The Effect of Moisture and Solvents on Viscoelastic Behavior................ 3.3
3.4
50
51
Measurements and Methods .................. 3.3.1 Laboratory Concerns ..................... 3.3.2 Volumetric (Bulk) Response ........... 3.3.3 The CEM Measuring System ............ 3.3.4 Nano/Microindentation for Measurements of Viscoelastic Properties of Small Amounts of Material......... 3.3.5 Photoviscoelasticity ...................... Nonlinearly Viscoelastic Material Characterization ................................... 3.4.1 Visual Assessment of Nonlinear Behavior................... 3.4.2 Characterization of Nonlinearly Viscoelastic Behavior Under Biaxial Stress States ............
56 63 63
68 69 69 70 71 74
76 83 84 84
85
53
3.5
Closing Remarks ...................................
89
53 55
3.6 Recognizing Viscoelastic Solutions if the Elastic Solution is Known.............. 3.6.1 Further Reading ...........................
90 90
55
References ..................................................
92
3.1 Historical Background During the past five decades the use of polymers has seen a tremendous rise in engineering applications. This growing acceptance of a variety of polymer-based de-
signs derives in part from the ease with which these materials can be formed into virtually any shape, and in part because of their generally excellent performance
Part A 3
With the heavy influx of polymers into engineering designs their special, deformation-rate-sensitive properties require particular attention. Although we often refer to them as time-dependent materials, their properties really do not depend on time, but time histories factor prominently in the responses of polymeric components or structures. Structural responses involving time-dependent materials cannot be assessed by simply substituting time-dependent modulus functions for their elastic counterparts. The outline provided here is intended to provide guidance to the experimentally inclined researcher who is not thoroughly familiar with how these materials behave, but needs to be aware
Data Loading...