Memories: Molecules and Circuits

Memories: Molecules and Circuits The questions of how, where and when memory traces are formed in the brain remain central issues in Cognitive Neuroscience. How do neuronal systems encode, consolidate and retrieve memory? How are memories embedded into co

  • PDF / 9,377,593 Bytes
  • 188 Pages / 439.37 x 666.142 pts Page_size
  • 63 Downloads / 231 Views

DOWNLOAD

REPORT


Bontempi A. Silva Y. Christen (Eds.)

Memories: Molecules and Circuits With 61 Figures

123

Bontempi, Bruno, Ph.D. Laboratoire de Neurosciences Cognitives CNRS UMR 5106 Université de Bordeaux 1 Avenue des Facultés 33405 Talence France e-mail: [email protected] Silva, Alcino J., Prof. Dr. Departments of Neurobiology Psychiatry and Biobehavioral Sciences Psychology and Brain Research Institute 695 Young Drive South Room 2357 Box 951761, UCLA Los Angeles, CA 90095-1761 USA e-mail: [email protected]

Christen, Yves, Ph.D. Fondation IPSEN Pour la Recherche Thérapeutique 24, rue Erlanger 75781 Paris Cedex 16 France e-mail: [email protected]

ISBN 978-3-540-45698-8 Springer Berlin Heidelberg New York Cataloging-in-Publication Data applied for Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at . This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permissions for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature. Cover design: design & production, Heidelberg, Germany Typesetting and production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany Printed on acid-free paper 27/3100/YL 5 4 3 2 1 0 SPIN 11867869

Preface

Memory can be typically defined as the brain function enabling the encoding, storage and retrieval of sensory information. In operational terms, this definition implies that our central nervous system not only processes various sensory modalities, be they visual, tactile, auditory, olfactory or gustatory, but is also capable of forming, organizing and conserving memory traces for extended periods of time. At both psychological and physiological levels, there is now a consensus that memory must no longer be seen as a unitary phenomenon but rather as an ensemble of dynamic processes, each one being subserved by different brain regions organized into multiple memory systems tha