Minimization of shears for pencil glide in body-centered cubic crystals

  • PDF / 543,650 Bytes
  • 6 Pages / 612 x 792 pts (letter) Page_size
  • 71 Downloads / 140 Views

DOWNLOAD

REPORT


P. PENNING is Professor of Metal Physics, Interd,sciphnary Department of Metals Science and Technology, Delft, University of Technology, The Netherlands. Manuscript submitted November 19, 1974, METALLURGICAL TRANSACTIONS A

p e n c i l glide to compute n u m e r i c a l l y the f o u r m a g n i t u d e s of s l i p . In t h i s p a p e r an a n a l y t i c a l s o l u t i o n f o r the p r o b l e m of (111> p e n c i l glide is given by u s i n g T a y l o r ' s m i n i m u m p r i n c i p l e . In view of the r e s u l t s of Chin and M a m m e l 3 t h i s s o l u t i o n m u s t be, and i n d e e d i s , i d e n t i c a l with the one o b t a i n e d by u s i n g B i s h o p and H i l l ' s a p p r o a c h . In a d d i t i o n the c r y s t a l r o t a t i o n due to s l i p has b e e n d e t e r m i n e d .

1. D E F O R M A T I O N AND ROTATION DUE TO SLIP Throughout this paper a crystal-based co-ordinate s y s t e m i s u s e d . T h e s l i p d i r e c t i o n i s (111). It is c o n venient to i n t r o d u c e a s y m m e t r i c m a t r i x ( a m n ) in the following way:

11,)

1 (~mn) =

1

1

-i

1

-1

-I

-I

1 -1

1

"

[1]

1

The four possible slip directions are: Dn = [~2n, ann, C q n ] / ' ~ 3 : , 7 = 1, 2, 3, 4. P e r p e n d i c u l a r to Dn two o r t h o g o n a l a x e s Mnl and Mn2 a r e c h o s e n to fix the o r i e n t a t i o n of the s l i p p l a n e n o r m a l Nn. Mnl = [ 0 , - ~ 3 n , ~ 4 n ] / ~ , Mn2 = [2~en, - ct~n, - c%n V v~, N n = Mnl c o s Cn + Mn2 sin ~n" A d i s t i n c t i o n i s m a d e b e t w e e n ~n and ~n + 7r. T h e a m o u n t of s l i p , F n , i s t a k e n to b e n o n n e g a t i v e . R e v e r s a l of s l i p i s e x p r e s s e d by adding n to ~n and h e n c e by a r e v e r s a l of s i g n in N n. The d i s p l a c e m e n t v e c t o r a r i s i n g f r o m t h i s s l i p i s e q u a l to: V. = F n (R "Nn)Dn,

[2]

w h e r e R d e n o t e s the r a d i u s v e c t o r of the c o n s i d e r e d l o c a t i o n . T h e s t r a i n c o m p o n e n t s can be d e r i v e d i m m e d i a t e l y f r o m t h i s value of Vn and s u m m i n g the cont r i b u t i o n of a l l s l i p s y s t e m s : En = -- ~ ~n rn sinSn, 3 n VOLUME 7A, JULY 1976-1021

+

E~ = -~- ~n axn r n sin (~bn - 2~r/3),

~2

E33 = " ~ ~

n

+L~3{~3 ~z~ 2 E ~ , - ~ n F n s i n ( ~ n + 27r/3)}

Otln r n s i n (~n + 2~r/3),

[3] + x~ {3 ~ E ~

+ ~ a ~ n r ~ sin

~.}

2E~a = - ---~ ~ Oten F n s i n ~n, 3

+ X~a{3 ~'2E~a + ~-~c%nr n s i n ( ~ n - 27r/3)} n

+ X~e{3 ~/'2E~2 + Y~ot~nF n s i n ( ~ n + 2~r/31}.

2Ex~ = - -~- L~ a~n F n sin(~bn - 2~r/3), n

2E~z = - ~~,/-22 " ~n ~ n Fn s i n (~0n +

S e t t i n g the d e r i v a t i v e with r e s p e c t to F n and ~n e q u a l to z e r o l e a d s to:

2'm/3).

It m u s t b e noted that the s u m of the f i r s t t h r e e s t r a i n s i s equal to z e r o (no change in v o l u m e ) so that t h e r e a r e five independent s t r a i n s . The r o t a t i o n of the c r y s t a l d u r i n g p l a s t i c flow cons i s t s of two p a r t