Modal Interval Extensions

The problem discussed in this chapter is that of obtaining a class of interval functions \(F: {I}^{{\ast}}({\mathbb{R}}^{k}) \rightarrow {I}^{{\ast}}(\mathbb{R})\) , consistently referring to the continuous functions f from \({\mathbb{R}}^{k}\) to \(\math

  • PDF / 3,024,804 Bytes
  • 330 Pages / 439.42 x 666.14 pts Page_size
  • 82 Downloads / 207 Views

DOWNLOAD

REPORT


Miguel A. Sainz · Joaquim Armengol Remei Calm · Pau Herrero Lambert Jorba · Josep Vehi

Modal Interval Analysis New Tools for Numerical Information

Lecture Notes in Mathematics Editors-in-Chief: J.-M. Morel, Cachan B. Teissier, Paris Advisory Board: Camillo De Lellis (Zurich) Mario Di Bernardo (Bristol) Alessio Figalli (Pisa/Austin) Davar Khoshnevisan (Salt Lake City) Ioannis Kontoyiannis (Athens) Gabor Lugosi (Barcelona) Mark Podolskij (Heidelberg) Sylvia Serfaty (Paris and NY) Catharina Stroppel (Bonn) Anna Wienhard (Heidelberg)

For further volumes: http://www.springer.com/series/304

2091

Miguel A. Sainz • Joaquim Armengol Remei Calm • Pau Herrero • Lambert Jorba Josep Vehi

Modal Interval Analysis New Tools for Numerical Information

123

Miguel A. Sainz Informática Matemática Aplicada y Estadística Escola Politecnica Superior University of Girona Girona, Spain

Joaquim Armengol Enginyeria ElJectrica ElectrJonica i AutomJatica Escola Politecnica Superior University of Girona Girona, Spain

Remei Calm Informática Matemática Aplicada y Estadística Escola Politecnica Superior University of Girona Girona, Spain

Pau Herrero Imperial College London London, United Kingdom

Lambert Jorba Matemática Económica Financiera y Actuarial Facultad de Economia y Empresa Universitat de Barcelona Barcelona, Spain

Josep Vehi Enginyeria ElJectrica ElectrJonica i AutomJatica Escola Politecnica Superior University of Girona Girona, Spain

ISBN 978-3-319-01720-4 ISBN 978-3-319-01721-1 (eBook) DOI 10.1007/978-3-319-01721-1 Springer Cham Heidelberg New York Dordrecht London Lecture Notes in Mathematics ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 Mathematics Subject Classification (2010): 65G40, 65G50, 03B10, 26A24, 65F10 © Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi