Model Abstraction in Dynamical Systems: Application to Mobile Robot Control
The subject of this book is model abstraction of dynamical systems. The p- mary goal of the work embodied in this book is to design a controller for the mobile robotic car using abstraction. Abstraction provides a means to rep- sent the dynamics of a syst
- PDF / 2,370,180 Bytes
- 126 Pages / 430 x 660 pts Page_size
- 3 Downloads / 240 Views
379
Patricia Mellodge, Pushkin Kachroo
Model Abstraction in Dynamical Systems: Application to Mobile Robot Control
ABC
Series Advisory Board F. Allgöwer, P. Fleming, P. Kokotovic, A.B. Kurzhanski, H. Kwakernaak, A. Rantzer, J.N. Tsitsiklis
Authors Dr. Patricia Mellodge Department of Electrical and Computer Engineering University of Hartford 200 Bloomfield Avenue West Hartford, CT 06117 USA E-Mail: [email protected]
Dr. Pushkin Kachroo University Transportation Center Howard R. Hughes College of Engineering 4505 Maryland Parkway Las Vegas, NV 89154-4007 USA & Department of Electrical and Computer Engineering University of Nevada, Las Vegas 4505 S. Maryland Pkwy Las Vegas, NV 89154-4026 USA E-Mail: [email protected]
ISBN 978-3-540-70792-9
e-ISBN 978-3-540-70799-8
DOI 10.1007/978-3-540-70799-8 Lecture Notes in Control and Information Sciences
ISSN 0170-8643
Library of Congress Control Number: 2008930993 c 2008
Springer-Verlag Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India. Printed in acid-free paper 543210 springer.com
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Nonholonomic Motion Planning and Control . . . . . . . . . . . 1.2.3 Other Control Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Contributions of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Organization of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 2 2 3 4 4 4
2
Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Differential Geometric Description of Systems . . . . . . . . . . . . . . . . 2.2 Control System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Nonholonomic Systems . . . . . . . . . . . . . . . . .
Data Loading...