Modelling of blasting-induced air overpressure wave propagation under atmospheric conditions by using ANN model
- PDF / 15,751,946 Bytes
- 11 Pages / 595.276 x 790.866 pts Page_size
- 5 Downloads / 213 Views
ORIGINAL PAPER
Modelling of blasting-induced air overpressure wave propagation under atmospheric conditions by using ANN model Umit Ozer 1 & Abdulkadir Karadogan 1
&
Meric Can Ozyurt 1 & Zeynep Sertabipoglu 1 & Ulku Kalayci Sahinoglu 1
Received: 9 December 2019 / Accepted: 29 July 2020 / Published online: 8 August 2020 # Saudi Society for Geosciences 2020
Abstract In this study, the propagation characteristics of blast-induced air overpressure waves in different atmospheric conditions were investigated. For this purpose, 158 blasting shots were observed at an excavation site in Istanbul, and 562 air overpressure events were recorded at 32 different measurement stations. The recorded air overpressure and weather conditions data were used together to train an artificial neural network (ANN) model to determine the air overpressure propagation characteristics that would occur in future studies. Besides, to provide a meaningful interpretation of the results of the study, the propagation trend of air overpressure waves was simulated by using the Kriging method. As a result of the study, it was found that there is a high correlated exponential relationship (r2 = 0.79) between air temperature and air overpressure propagation, while wind velocities under 6 m/s have no effect on the propagation. The developed ANN model allowed the estimation of the air overpressure that any blasting under different atmospheric conditions at any point in and around the excavation site. Atmospheric conditions and constructions have an impact on the blast-induced air shock propagation. Considering the atmospheric conditions and structure variation, it can be said that only dynamic models can represent the site for air shock propagation. Therefore, it is essential to carry out the application verified in this study. Keywords Air temperature . Wind . Blasting . Air overpressure . Artificial neural networks
Introduction One of the most critical outputs expected from a successful blast shot is safety in terms of environmental impacts, considering the environmental sensitivity in urban areas with a highrisk point. In order to prevent a facility located at a critical distance from the blasting source to be affected from air overpressure, it must be handled with appropriate methods (Khandelwal and Kankar 2009; Karadoğan 2008; Siskind et al. 1980). Atmospheric conditions such as wind direction, wind velocity and air temperature are effective in the propagation of the shock waves (Olofsson 2002). Ratcliff et al. (2011) stated that air temperature decreases with increasing altitude, and air Responsible Editor: Amjad Kallel * Abdulkadir Karadogan [email protected] 1
Department of Mining Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
shock waves reflect upwards and damp rationally, and wind velocity could carry the air overpressure to longer distances in wind direction. If the air shock waves are strong enough, they can cause damage to buildings, and also psychological and physical disorders on the living. M
Data Loading...