Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar o

The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an

  • PDF / 20,954,560 Bytes
  • 205 Pages / 482 x 692 pts Page_size
  • 80 Downloads / 227 Views

DOWNLOAD

REPORT


Aspects of Mathematics Edited by Klas Diederich

Vol. E 3: G. Hector/U. Hirsch: Introduction to the Geometry of Foliations, Part B Vol. E 6: G. Faltings/G. Wustholz et al.: Rational Points* Vol. E 9: A. Howard/P.-M. Wong (Eds.): Contribution to Several Complex Variables Vol. E 15: J .-P Serre: Lectures on the Mordell-Weil Theorem Vol. E 16: K. Iwasaki/H. Kimura/S. Shimomura/M. Yoshida: From Gauss to Painleve Vol. E 17: K. Diederich (Ed.): Complex Analysis Vol. E 18: W. W. J . Hulsbergen: Conjectures in Arithmetic Algebraic Geometry Vol. E 19: R. Racke: Lectures on Nonlinear Evolution Equations Vol. E 20: F. Hirzebruch/Th. Berger /R. Jung: Manifolds and Modular Forms* Vol. E 21: H. Fujimoto: Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm Vol. E 22: D. V. Anosov / A. A. Bolibruch: The Riemann-Hilbert Problem Vol. E 24: D. S. Alexander: A History of Complex Dynamics Vol. E 25: A. Tikhomirov / A. Tyurin (Eds.): Algebraic Geometry and its Applications Vol. E 27: D. N. Akhiezer: Lie Group Actions in Complex Analysis Vol. E 28: R. Gerard/H. Tahara: Singular Nonlinear Partial Differential Equations Vol. E29: R.-P. Holzapfel: Ball and Surface Arithmetics Vol. E30: R. Huber: Etale Cohomology of Rigid Analytic Varieties and Adic Spaces Vol. E 31: D. Huybrechts/M. Lehn: The Geometry of Moduli Spaces of Sheaves* Vol. E32: M. Yoshida: Hypergeometric Functions, My Love Vol. E33: C. Faber/E. Looijenga (Eds.): Moduli of Curves and Abelian Varieties

* A Publication of the Max-Planck-Institut fur Mathematik, Bonn

Carel Faber Eduard Looijenga (Eds. )

Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli

~

vleweg

Prof. Dr. Eduard Looijenga Dept. uf Mathematics University of Utrecht PO Box 80. 010 NL-3508 TA Utrecht Dr. Carel Faber Dept. of Mathematics Oklahoma State University Stillwater, OK 74078-1058 USA and Dept. of Mathematics Royal Institute of Technology 5-100 44 Stockholm Prof. Dr. Klas Diederich (Series Editor) Dept. of Mathematics University of Wuppertal 0-42119 Wuppertal

AII rig h ts rese rved © Fricdr. Vieweg & Sohn Verlagsgesel\schaft mbH, Braunschweig/ Wiesbaden, 1999

Vieweg is a subsidiary company of Bertelsmann Professional Information.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, mechanical, photocopying or otherwise without prior permission of the copyright holder.

http://www.vieweg.de Cuver design: Ulrike Weigel, www.CorporateDesignGroup.de ISBN 978-3-322-90172-9 (eBook) ISBN 978-3-322-90174-3 DOI 10.1007/978-3-322-90172-9

v

Preface The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Rain, E. Looijenga, and F. Oort, originates from the Dutch Intercity Seminar on Moduli (year 1995-96). Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles. Topics include a stratification of a moduli space of abelian varieties in positive chara