Monoid Properties as Invariants of Toposes of Monoid Actions

  • PDF / 531,720 Bytes
  • 35 Pages / 439.37 x 666.142 pts Page_size
  • 92 Downloads / 186 Views

DOWNLOAD

REPORT


Monoid Properties as Invariants of Toposes of Monoid Actions Jens Hemelaer1

· Morgan Rogers2

Received: 14 May 2020 / Accepted: 13 November 2020 © The Author(s) 2020

Abstract We systematically investigate, for a monoid M, how topos-theoretic properties of PSh(M), including the properties of being atomic, strongly compact, local, totally connected or cohesive, correspond to semigroup-theoretic properties of M. Keywords Topos · Presheaves · Monoid · Flat · Projective · Semigroup · Local · Strongly compact · Colocal · Totally connected · Strongly connected · de Morgan · Cohesive

Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Toposes of Discrete Monoid Actions . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Tensors and Homs, Flatness and Projectivity . . . . . . . . . . . . . . . . . . . . . 1.2.1 Hom-Sets and Projectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Tensors and Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Properties of the Global Sections Morphism . . . . . . . . . . . . . . . . . . . . . . . 2.1 Groups and Atomicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Right-Factorable Finite Generation and Strong Compactness . . . . . . . . . . . . 2.3 Right Absorbing Elements and Localness . . . . . . . . . . . . . . . . . . . . . . 2.4 The Right Ore Condition, Preservation of Monomorphisms and de Morgan Toposes 2.5 Spans and Strong Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Preserving Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Right Collapsibility and Total Connectedness . . . . . . . . . . . . . . . . . . . . 2.8 Left Absorbing Elements and Colocalness . . . . . . . . . . . . . . . . . . . . . . 2.9 Zero Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.10 Trivialising Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

Communicated by Jirí Rosický.

B

Morgan Rogers [email protected] Jens Hemelaer [email protected]

1

Department of Mathematics, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium

2

Marie Sklodowska-Curie fellow of the Istituto Nazionale di Alta Matematica, Università degli Studi dell’Insubria, Via Valleggio n. 11, 22100 Como, CO, Italy

123

J. Hemelaer, M. Rogers 3 Conclusion . . . . . . . . . . . . . . 3.1 Notable Omissions . . . . . . . 3.2 Relativisation and Generalisation References . . . . . . . . . . . . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .