Natural Deduction, Hybrid Systems and Modal Logics

This volume provides an extensive treatment of Natural Deduction and related types of proof systems, with a focus on the practical aspects of proof methods. The book has two main aims: Its first aim is to provide a systematic and historical survey of the

  • PDF / 457,613 Bytes
  • 47 Pages / 439.37 x 666.142 pts Page_size
  • 57 Downloads / 234 Views

DOWNLOAD

REPORT


RAPHY

[11] Areces, C., and J. Heguiabehere. HyLoRes: Direct resolution for hybrid logics. Available on Hybrid Logic Homepage. [12] Areces, C., D. Gorin. 2005. Ordered resolution with selection for h(@). In Proceedings of LPAR 2004, eds. F. Baader and A. Voronkov, 125– 141, LNCS 3452. [13] Areces, C., B. ten Cate. 2006. Hybrid logics. In Handbook of modal logic, eds. P. Blackburn, J. van Benthem, and F. Wolter, 821–868. Amsterdam: Elsevier. [14] Arlo-Costa, H., and E. Pacuit. 2006. First-order classical modal logic. Studi a Logica 84: 171–210. [15] Avron, A. 1993. Gentzen-type systems, resolution and tableaux. Journal of Automated Reasoning 10(2): 265–281. [16] Avron, A. 1996. The method of hypersequents in the proof theory of propositional non-classical logics. In Logic: From foundations to applications, eds. W. Hodges et al., 1–32. Oxford: Oxford Science Publication. [17] Avron, A., F. Honsell, M. Miculan, and C. Paravano. 1998. Encoding modal logics in logical frameworks. Studi a Logica 60: 161–202. [18] Baldoni, M. 1998. Normal multimodal logics: Automati c deduction and logi c programming extension PhD thesis, Torino. [19] Baldoni, M. 2000. Normal multimodal logics with interaction axioms. In Labelled deduction vol 17 of Applied Logic Series, eds. D. Basin et al., 33–53. Dordrecht: Kluwer. [20] Barth, E.M., E.C. Krabbe. 1982. From Axiom to Dialogue. Berlin: Walter de Gruyter. [21] Basin, D., S. Matthews, and L. Vigano. 1997. Labelled propositional modal logics: Theory and practice. Journal of Logic and Computation 7(6): 685–717. [22] Basin, D., S. Matthews, and L. Vigano. 1998. Natural deduction for non-classical logics. Studi a Logica 60: 119–160.

BIBLIOGRAPHY

447

[23] Basin, D., S. Matthews 2002. Logical frameworks. In Handbook of philosophical logic, eds. D. Gabbay, and F. Guenthner, 2nd ed., vol IX, 89–163. New York: Springer. [24] Belnap, N.D. 1982. Display logic. Journal of Philosophical Logic 11: 375–417. [25] Bencivenga, E. 1986. Free logics. In Handbook of Philosophical Logic, eds. D. Gabbay, and F. Guenthner, vol III, 373–426. Dordrecht: Reidel Publishing Company. [26] Ben-Sasson, E., and A. Widgerson. 2001. Short proofs are narrow – resolution made simple. Journal of the ACM 48(2): 149–169. [27] Beth, E. 1955. Semantic entailment and formal derivability. Mededelingen der Kon. Ned. Akad. v. Wet. 18(13). [28] Beth, E.W. 1959. The foundations of mathematics. Amsterdam: North Holland. [29] Blackburn, P. 1990. Nominal tense logi c and other sorted intensional frameworks, Ph.D thesis, Centre for Cognitive Science, University of Edinburgh. [30] Blackburn, P. 1992. Nominal tense logic. Notre Dame Journal of Formal Logic, 34: 56–83. [31] Blackburn, P. 1994. Tense, temporal reference and tense logic. Journal of Semantics 11: 83–101. [32] Blackburn, P. 2000. Internalizing labelled deduction. Journal of Logi c and Computation 10(1): 137–168. [33] Blackburn, P. 2000. Representation, reasoning, and relational structures: A hybrid logic manifesto. Logic Journal of the IGPL 8(3): 339– 365. [34] Blackburn, P. 2001