Needle tip force estimation by deep learning from raw spectral OCT data

  • PDF / 1,016,213 Bytes
  • 4 Pages / 595.276 x 790.866 pts Page_size
  • 79 Downloads / 183 Views

DOWNLOAD

REPORT


SHORT COMMUNICATION

Needle tip force estimation by deep learning from raw spectral OCT data M. Gromniak1

· N. Gessert1 · T. Saathoff1 · A. Schlaefer1

Received: 11 January 2020 / Accepted: 30 June 2020 © The Author(s) 2020

Abstract Purpose Needle placement is a challenging problem for applications such as biopsy or brachytherapy. Tip force sensing can provide valuable feedback for needle navigation inside the tissue. For this purpose, fiber-optical sensors can be directly integrated into the needle tip. Optical coherence tomography (OCT) can be used to image tissue. Here, we study how to calibrate OCT to sense forces, e.g., during robotic needle placement. Methods We investigate whether using raw spectral OCT data without a typical image reconstruction can improve a deep learning-based calibration between optical signal and forces. For this purpose, we consider three different needles with a new, more robust design which are calibrated using convolutional neural networks (CNNs). We compare training the CNNs with the raw OCT signal and the reconstructed depth profiles. Results We find that using raw data as an input for the largest CNN model outperforms the use of reconstructed data with a mean absolute error of 5.81 mN compared to 8.04 mN. Conclusions We find that deep learning with raw spectral OCT data can improve learning for the task of force estimation. Our needle design and calibration approach constitute a very accurate fiber-optical sensor for measuring forces at the needle tip. Keywords Optical coherence tomography · Deep learning · Force estimation · Raw data

Introduction Needle placement is a challenging problem for a variety of medical interventions, including brachytherapy or biopsy [12]. The force acting on the needle tip allows for inference about the currently penetrated tissue. This information can be used to navigate the needle and to prevent injuries of delicate structures [9]. In order to distinguish tissue based on tip forces, it may be required to measure those with an accuracy of approximately 0.01 N [8]. Tip forces cannot be measured with external sensors due to friction forces at the needle shaft [5]. Therefore, small-scale fiber-optical force estimation methods have been directly integrated into the needle tip. Several sensor concepts are based on Fabry–Pérot interferometry [1] and fiber Bragg gratings [6]. Here, we consider a setting where optical coherence tomography is

B 1

available, e.g., to study tissue deformation [10] or to realize elastography [7]. While OCT has been proposed for tip forces estimation before [2,3], these approaches rely on the reconstructed gray value data. However, using the reconstructed data has two limitations. First, the signal processing is based on a number of assumptions which may cause some loss of signal information. Second, it does not incorporate the phase part of the complex OCT signal that is particularly sensitive to small axial shifts. Therefore, we explore whether the tip force estimation accuracy can be improved by directly using the raw spec