Neighborhood sampling: how many streets must an auditor walk?
- PDF / 1,547,627 Bytes
- 5 Pages / 595.276 x 793.701 pts Page_size
- 14 Downloads / 223 Views
SHORT PAPER
Open Access
Neighborhood sampling: how many streets must an auditor walk? Tracy E McMillan1, Catherine Cubbin2, Barbara Parmenter3, Ashley V Medina4, Rebecca E Lee4*
Abstract This study tested the representativeness of four street segment sampling protocols using the Pedestrian Environment Data Scan (PEDS) in eleven neighborhoods surrounding public housing developments in Houston, TX. The following four street segment sampling protocols were used (1) all segments, both residential and arterial, contained within the 400 meter radius buffer from the center point of the housing development (the core) were compared with all segments contained between the 400 meter radius buffer and the 800 meter radius buffer (the ring); all residential segments in the core were compared with (2) 75% (3) 50% and (4) 25% samples of randomly selected residential street segments in the core. Analyses were conducted on five key variables: sidewalk presence; ratings of attractiveness and safety for walking; connectivity; and number of traffic lanes. Some differences were found when comparing all street segments, both residential and arterial, in the core to the ring. Findings suggested that sampling 25% of residential street segments within the 400 m radius of a residence sufficiently represents the pedestrian built environment. Conclusions support more cost effective environmental data collection for physical activity research. Findings Neighborhood context has been associated with health and physical activity (PA) [1-13]. Studies of specific neighborhood characteristics, including pedestrian pathways, reduced automobile traffic, and aesthetic appeal, and their association with PA [14], have yielded rigorous instrument development, validation and implementation to increase understanding of the role the built environment plays in PA [15]. Nevertheless, there remain unresolved issues concerning specific sampling and data collection protocols that have implications for future research, promotion and policy. Although some municipalities collect and compile GIS data about the built environment that aid PA research, most do not. Very few have detailed data such as sidewalk condition or pathway obstructions, and the quality and consistency of the GIS data vary widely [16]. Many environmental audit instruments have been developed to address these limitations. Four frequently used instruments include the Systematic Pedestrian and Cycling Environmental Scan (SPACES) [17]; the Irvine * Correspondence: [email protected] 4 Texas Obesity Research Center, Department of Health and Human Performance, University of Houston, 3855 Holman St, Garrison Gymnasium Rm 104, Houston, TX 77004, USA
Minnesota Inventory (I-M) [18]; the Analytic Audit Tool and Checklist Audit Tool (SLU) [19]; and the Pedestrian Environment Data Scan (PEDS) [20]. Each has adequate reliability and provides a rich assortment of micro-scale environment data. The principal limitation to these instruments is the time and cost involved in data collection. PEDS has the lowest d
Data Loading...