New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems

0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with resp

  • PDF / 2,962,040 Bytes
  • 228 Pages / 430 x 660 pts Page_size
  • 88 Downloads / 169 Views

DOWNLOAD

REPORT


380

Michael Basin

New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems

ABC

Series Advisory Board F. Allgöwer, P. Fleming, P. Kokotovic, A.B. Kurzhanski, H. Kwakernaak, A. Rantzer, J.N. Tsitsiklis

Author Michael Basin Dept. of Physical and Mathematical Sciences Autonomous University of Nuevo Leon Av. Universidad s/n. Ciudad Universitaria San Nicolás de los Garza, Nuevo León, C.P. 66451 Mexico E-Mail: [email protected]

ISBN 978-3-540-70802-5

e-ISBN 978-3-540-70803-2

DOI 10.1007/978-3-540-70803-2 Lecture Notes in Control and Information Sciences

ISSN 0170-8643

Library of Congress Control Number: 2008931011 c 2008 

Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India. Printed in acid-free paper 543210 springer.com

Preface

0.1 Introduction Although the general optimal solution of the filtering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to observations (see [48] or [41], Theorem 6.5, formula (6.79) or [70], Subsection 5.10.5, formula (5.10.23)), there are a very few known examples of nonlinear systems where the Kushner equation can be reduced to a finite-dimensional closed system of filtering equations for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy filter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of filtering equations. However, the optimal nonlinear finite-dimensional filter can be obtained in some other cases, if, for example, the state vector can take only a finite number of admissible states [91] or if the observation equation is linear and the drift term in the state equation satisfies the Riccati equation d f /dx + f 2 = x2 (see [15]). The complete classification of the “general situation” cases (this means that there are no special assumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear finite-dimensional filter exists, is gi