Nondestructive evaluation of residual stress for thermal barrier coated turbine blades by Cr 3+ photoluminescence piezos
- PDF / 793,867 Bytes
- 4 Pages / 612 x 792 pts (letter) Page_size
- 67 Downloads / 216 Views
The authors gratefully acknowledge the facilities provided by the High Temperature Corrosion Laboratory, University of Michigan. This work was supported by the Office of Basic Energy Sciences, United States Department of Energy, under Grant No. DE-FG0285ER45184.
Nondestructive Evaluation of Residual Stress for Thermal Barrier Coated Turbine Blades by Cr31 Photoluminescence Piezospectroscopy Y.H. SOHN, K. SCHLICHTING, K. VAIDYANATHAN, E. JORDAN, and M. GELL Thermal barrier coatings (TBCs), consisting of ZrO2-7 to 8 wt pct Y2O3 (YSZ) ceramic coating, thermally grown oxide (TGO), metallic bond coat, and superalloy substrate, offer thermal/environmental protection for hot components in gas turbine engines.[1–4] Failure of TBCs, in general, occurs by the spallation of YSZ coatings at or near the YSZ/ bond coat interface where the TGO grows during hightemperature exposure.[1–4] Therefore, it is important to develop a nondestructive inspection technique for assessment of the structural integrity of TBCs, especially at the interfaces involving the TGO. Cr31 photoluminescence piezospectroscopy, developed by Clarke and co-workers as well as HOWMET* International,[5,6,7] has shown promising *HOWMET is a trademark of Howmet International, Whitehall, MI.
REFERENCES 1. T.M. Angeliu and G.S. Was: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1169-83. 2. T.M. Angeliu: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1993. 3. J. Congleton, B. Hemsworth, R.N. Parkins, and P.M. Singh: Nucl. Eng. Design, 1991, vol. 132, pp. 119-32. 4. T.M. Angeliu, J.K. Sung, and G.S. Was: 5th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, American Nuclear Society, Inc., La Grange Park, IL, 1992, pp. 475-81. 5. T.M. Angeliu, D.J. Paraventi, and G.S. Was: Corrosion, 1995, vol. 51, pp. 837-48. 6. E. Sirois, P. Sofronis, and H.K. Birnbaum: Acta Metall. Mater., 1992, vol. 40, pp. 1377-85. 7. H.H. Uhlig: J. Electrochem. Soc., 1976, vol. 123, pp. 1699-1701. 8. D.A. Jones: Metall. Trans. A, 1985, vol. 16A, pp. 1133-41. 9. U.F. Kocks, A.S. Argon, and M.F. Ashby: Progr. Mater. Sci., Pergamon Press, Oxford, United Kingdom, 1975, vol. 19. 10. N. Totsuka and Z. Szklarska-Smialowska: Corrosion, 1987, vol. 43, pp. 734-38. 11. B. Gunderson: Introduction to Statistics, University of Michigan, Hayden-McNeil Publishing, Inc., Westland, MI, 1994. 12. V. Thaveeprugsriporn and G.S. Was: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2101-12. 13. J. Cadek: Creep in Metallic Materials, Materials Science Monographs, Elsevier Science Publishing Company, New York, NY, 1988, vol. 48. 14. C.R. Barrett and W.D. Nix: Acta Metall. Mater., 1965, vol. 13, pp. 1247-58. 15. D. Sidey and B. Wilshire: Met. Sci. J., 1969, vol. 3, pp. 56-60. 16. J.K. Sung: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1989. 17. C.B. Carter: Phys. Status Solidi A, 1979, vol. 54, pp. 395-406. 18. S.M. Myers, M.I. Baskes, H.K. Birnbaum, J.W. Corbett, G.O. DeLeo, S.K. Estreicher, E.E. Haller, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, and M.J. St
Data Loading...