NSF kicks off Quantum Leap Challenge Institutes program

  • PDF / 863,661 Bytes
  • 2 Pages / 585 x 783 pts Page_size
  • 78 Downloads / 153 Views

DOWNLOAD

REPORT


NSF kicks off Quantum Leap Challenge Institutes program nsf.gov

M

aterials research to advance quantum information science (QIS) has strong potential to revolutionize a range of technologies across sensing, computing, modeling, and communications. Development of these technologies will have a significant impact on the economy and national security of the United States, drawing interest from within the US government and driving QIS funding and policy (see sidebar). The latest action from the National Science Foundation (NSF) is a solicitation for funding within the Quantum Leap Challenge Institutes (QLCI) program. This is in addition to 18 awards announced for “conceptualization grants” already issued in 2019. The conceptualization grants awarded under this program are a one-year investment of between $100,000 and $150,000

with the goal of supporting research teams as they develop Challenge Institute proposals. Starting dates for the conceptualization grants range from August 2019 to June 2020, and most are already underway. “The goal [of the conceptualization grant] is to form a compelling and comprehensive vision for a QLCI proposal,” says Junichiro Kono, professor at Rice University and principal investigator for the Texas Quantum Institute, which is one of the awarded QLCI conceptualization grants. The QLCI program solicitation runs through 2021 and will provide funding for between two and six Challenge Institutes funded at levels up to $5 million per year for five years. Research at these institutes will focus on quantum sensing, computing, modeling, and/or communications.

Three-dimensional conceptual illustration of quantum processor in a global computer network. Credit: Shutterstock.

168

In addition to addressing the scientific and technological challenges associated with quantum research, the institutes are tasked with finding “multidisciplinary approaches” to educate and build the future QIS workforce. The QLCI program satisfies statutory requirements laid out in the National Quantum Initiative Act mandating that NSF establish between two and five multidisciplinary QIS centers. Kono says many of the researchers involved with building the Texas Quantum Institute are already working on QIS research. But Kono believes an additional value of the conceptualization grant is that it has enabled researchers to form new collaborations and find cross-disciplinary approaches to developing QIS technologies. Kai-Mei Fu, principal investigator for the Institute for Hybrid Quantum Systems at the University of Washington in Seattle—another recipient of a QLCI conceptualization grant—agrees that while QIS research is already underway across a range of disciplines, there is a need to build connections across these disciplines to bring “people who were not formally trained as quantum information scientists to participate and contribute to the field of QIS.” Fu, an associate professor of physics and electrical and computer engineering at the University of Washington, believes that these connections can be built through t