Numerical simulation for MHD flow of Casson nanofluid by heated surface

  • PDF / 2,686,602 Bytes
  • 9 Pages / 595.276 x 790.866 pts Page_size
  • 82 Downloads / 178 Views

DOWNLOAD

REPORT


ORIGINAL ARTICLE

Numerical simulation for MHD flow of Casson nanofluid by heated surface Sudheer Khan1 · Wang Shu1 · Mehboob Ali2 · Faisal Sultan2 · Muhammad Shahzad3 Received: 16 February 2020 / Accepted: 20 August 2020 © King Abdulaziz City for Science and Technology 2020

Abstract This research intends elaborate the nanoscience and nanotechnology to rheological and thermal aspect of the nanofluids. The conventional heat transfer fluids are mostly described the reduced performing of heat transport tools and increasing the energy charges. For this reason,nanofluids have been familiar such as likely proxies to established practices of fluids due to their intensify aptitude of heat transport coefficient. Here, magnetohydrodynamic of Casson nanofluid toward a stretching sheet is addressed. Furthermore, effect of nonlinear radiated and Arrhenius activation energy with new mass flux theory are explored. The solution of the problems are obtained by using numerical procedure bvp4c technique. The graphical behavior of velocity field is decresed function of Magnetohydrodynamic. The radiation and thermophoresis parameters enhancing the temperature field. Also, the concentration performance for increasing Brownian motion and activation energy parameters. Keywords  Cassonnanofluid · New mass flux theory · Magnetohydrodynamic · Nanoparticles · Activation energy List of symbols coordinates (x, y, z Space ) C , C  Skin friction coefficients fx fy ( ) 𝜏xz , 𝜏yz Surface shear stresses 𝜎 Electrical conductivity Nux Local Nusselt N ∗ Buoyancy ratio parameter Nb Brownian motion parameter Nt Thermophoresis parameter Tw Wall temperature Uw (x), Vw (x) Stretching velocities t Time (f , g) Dimensionless velocities 𝜎 ∗ Stefan–Boltzmann constant 𝜅 ∗ Mean absorption coefficient 𝜆 Mixed convection parameter Pr Prandtl number * Sudheer Khan [email protected] * Wang Shu [email protected] 1



Beijing University of Technology, Beijing 100081, China

2



Department of Mathematics, Hazara University, Mansehra 21300, Pakistan

3

Department of Mathematics and Statistics, University of Haripur, Haripur 22620, Pakistan



T Temperature qr Radiative heat flux 𝜃 Dimensionless temperature 𝛽T Thermal expansion coefficient 𝛽C Solutal expansion coefficient B(t) Strength of magnetic field DT Thermophoresis diffusion coefficient a, b, 𝜒 Positive constants 𝛼 Ratio of stretching rates parameter 𝜅 Thermal conductivity 𝜂 Dimensionless variable m(− < m < 1) Fitted rate constant Le Lewis number M Magnetic parameter Rd Thermal radiation Rex Local Reynolds number u, v, w Velocity components 𝛿 Temperature difference parameter (𝜌c)f Heat capacity of fluid E Activation energy 𝜎 ∗∗ Reaction rate parameter g Gravity C Concentration of fluid 𝜏 Effective heat capacity ratio 𝜌f Fluid density 𝛼1 Thermal diffusivity 𝜙 Dimensionless concentration

13

Vol.:(0123456789)



Applied Nanoscience

parameter (𝛽 Casson ) T∞ , C∞ Nanofluid ambient temperature and concentration DB Brownian diffusion coefficient 𝜈 Kinematic vi