Numerical simulation of double diffusive convection and electroosmosis during peristaltic transport of a micropolar nano

  • PDF / 2,500,901 Bytes
  • 16 Pages / 595.276 x 790.866 pts Page_size
  • 46 Downloads / 209 Views

DOWNLOAD

REPORT


Numerical simulation of double diffusive convection and electroosmosis during peristaltic transport of a micropolar nanofluid on an asymmetric microchannel D. Tripathi1   · J. Prakash2 · M. Gnaneswara Reddy3 · J. C. Misra4 Received: 23 April 2020 / Accepted: 27 August 2020 © Akadémiai Kiadó, Budapest, Hungary 2020

Abstract A numerical computation is performed to analyze the double diffusive convection in micropolar nanofluids flow governed by peristaltic pumping in an asymmetric microchannel, in the presence of thermal radiation and an external magnetic field. The highly nonlinear governing equations are diluted by using desirable physical assumptions such as lubrication approximation and low zeta potential. Convective boundary conditions are employed. This enables us to determine numerical estimates of various physical flow variables such as velocity, pressure gradient, spin velocity, temperature of the nanofluid, concentration of solute, and volume fraction of nanoparticles for sundry parameters like micropolar parameter, coupling parameter, solutal Grashof number, thermophoretic diffusion coefficient, Grashof number, thermal radiation parameter and Helmholtz–Smoluchowski velocity with the aid of bvp4c function built-in command of MATLAB 2012b. Influence of each relevant parameter on flow, thermal and species characteristics are computed in this study. Influence of Soret and Dufour parameters are also simulated. This model is applicable to the study of chemical fraternization/separation procedures and various thermal management systems like of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and many more. Keywords  Peristalsis · Electroosmosis · Double diffusive convection · Nanofluids · Micropolar fluids · Thermal radiation List of symbols (a1, a2) Amplitudes of left and right walls of microchannel (m) (a, b) Dimensionless amplitudes of left and right of the micro asymmetric vessel (Bh1, ­Bh2) Heat transfer Biot number at right and left walls Br Solutal Grashof number c Wave speed (m s−1)

* D. Tripathi [email protected] 1



Department of Mathematics, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand 246174, India

2



Department of Mathematics, Avvaiyar Government College for Women, Karaikal, Puducherry‑U.T. 609 602, India

3

Department of Mathematics, Acharya Nagarjuna University Campus, Ongole 523 001, India

4

Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India



cp Specific heat capacity (J kg−1 K−1) ­(K−1 s−2 m2) (C0, C1) Solutal concentration at the left and right walls C̃ Solutal concentration d Half channel width (m) DT Thermophoretic diffusion coefficient ­(m2 s−1) DB Brownian diffusion coefficient ­(m2 s−1) DS Solutal diffusivity ­(m2 s−1) DTC Dufour diffusivity ­(m2 s−1) DCT Soret diffusivity ­(m2 s−1) Ex Applied electrical field Ẽ Electric potential E Dimensionless electric potential e Fundamental charge F Dimensionless mean flows Gr Thermal