Numerical solution of Variational Inequalities by Adaptive Finite Elements
Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-cal
- PDF / 6,727,859 Bytes
- 162 Pages / 419.528 x 595.276 pts Page_size
- 34 Downloads / 236 Views
		    VIEWEG+TEUBNER RESEARCH Advances in Numerical Mathematics Herausgeber | Editors: Prof. Dr. Dr. h. c. Hans Georg Bock Prof. Dr. Dr. h. c. Wolfgang Hackbusch Prof. Mitchell Luskin Prof. Dr. Rolf Rannacher
 
 Franz-Theo Suttmeier
 
 Numerical solution of Variational Inequalities by Adaptive Finite Elements
 
 VIEWEG+TEUBNER RESEARCH
 
 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.
 
 1st Edition 2008 All rights reserved © Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2008 Readers: Christel A. Roß Vieweg+Teubner is part of the specialist publishing group Springer Science+Business Media www.viewegteubner.de No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. Registered and/or industrial names, trade names, trade descriptions etc. cited in this publication are part of the law for trade-mark protection and may not be used free in any form or by any means even if this is not specifically marked. Cover design: KünkelLopka Medienentwicklung, Heidelberg Printing company: Strauss Offsetdruck, Mörlenbach Printed on acid-free paper Printed in Germany ISBN 978-3-8348-0664-2
 
 Summary This work describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a numerically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored according to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities.
 
 F¨ ur Alexandra, Katharina und Merle
 
 Contents
 
 1 Introduction
 
 1
 
 2 Models in elasto-plasticity
 
 13
 
 2.1
 
 Governing equations . . . . . . . . . . . . . . . . . . . . . . . .
 
 14
 
 2.2
 
 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 
 20
 
 3 The dual-weighted-residual method
 
 23
 
 3.1
 
 A model situation in plasticity . . . . . . . . . . . . . . . . . .
 
 24
 
 3.2
 
 A posteriori error estimate . . . . . . . . . . . . . . . . . . . . .
 
 25
 
 3.3
 
 Evaluation of a posteriori error bounds . . . . . . . . . . . . . .
 
 26
 
 3.4
 
 St		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	