On a 1D Viscous Reactive and Radiative Gas with First-order Arrhenius Kinetics

In this chapter, we establish the global existence and exponential stability of solutions in H i (i = 1,2,4) for a Stefan-Boltzmann model of a viscous, reactive and radiative gas with first-order Arrhenius kinetics in a bounded interval. In so doing we de

  • PDF / 2,149,148 Bytes
  • 181 Pages / 476.22 x 680.32 pts Page_size
  • 101 Downloads / 148 Views

DOWNLOAD

REPORT


Advisory Editorial Board Leonid Bunimovich (Georgia Institute of Technology, Atlanta) Benoît Perthame (Université Pierre et Marie Curie, Paris) Laurent Saloff-Coste (Cornell University, Ithaca) Igor Shparlinski (Macquarie University, New South Wales) Wolfgang Sprössig (TU Bergakademie Freiberg) Cédric Villani (Institut Henri Poincaré, Paris)

Yuming Qin Lan Huang

Global Well-posedness of Nonlinear Parabolic-Hyperbolic

Coupled Systems

Yuming Qin Department of Applied Mathematics Donghua University Shanghai People’s Republic of China

Lan Huang College of Mathematics and Information Science North China University of Water Sources and Electric Power Zhengzhou People’s Republic of China

ISSN 1660-8046 e-ISSN 1660-8054 ISBN 978-3-0348-0279-6 e-ISBN 978-3-0348-0280-2 DOI 10.1007/978-3-0348-0280-2 Springer Basel Dordrecht Heidelberg London New York Library of Congress Control Number: 2012931854 Mathematics Subject Classification (2010): 35Q30, 76-XX, 76D05 © Springer Basel AG 2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use, permission of the copyright owner must be obtained. Printed on acid-free paper

Springer Basel AG is part of Springer Science+Business Media www.birkhauser-science.com

To our parents Zhenrong Qin

Xilan Xia

and Shaolin Huang

Chuanfeng Yang

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ix

1 Global Existence of Spherically Symmetric Solutions for Compressible Non-autonomous Navier-Stokes Equations 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . 1.2 Global Existence of Solutions in 𝐻 1 . . . . . . . 1.3 Global Existence of Solutions in 𝐻 2 . . . . . . . 1.4 Global Existence of Solutions in 𝐻 4 . . . . . . . 1.5 Bibliographic Comments . . . . . . . . . . . . . .

Nonlinear . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

1 4 19 25 32

2 Global Existence and Exponential Stability for a Real Viscous Heat-conducting Flow with Shear Viscosity 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . 2.3 Proof of Theorem 2.1.2 . . . . . . . . . . . . . . . . . . . 2.4 Proof of Theorem 2.1.3 . . . . . . . . . . . . . . . . . . . 2.5 Bibliographic Comments . . . . . . . . . . . . . . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

33 38 46 53 73

3 Regularity and Exponential Stability Fluid in One Space Dimension 3.1 Introduction . . . . . . . . . . 3.2 Proof of Theorem 3.1.1 . . . . 3.3 Proof of Theorem 3.1.2 . . . . 3.4 Bibliographic Comments . . .

75 78 89 91

of the 𝒑th Power Newtonian . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .