On a problem of Bourgain concerning the $$L^1$$ -norm of exponential sums
- PDF / 194,427 Bytes
- 8 Pages / 439.37 x 666.142 pts Page_size
- 61 Downloads / 202 Views
Mathematische Zeitschrift
On a problem of Bourgain concerning the L 1 -norm of exponential sums Christoph Aistleitner
Received: 20 November 2012 / Accepted: 10 January 2013 © Springer-Verlag Berlin Heidelberg 2013
Abstract
Bourgain posed the problem of calculating n 1 2πik j θ = sup sup √ e n n≥1 k1 (log n)1/4 − c1 (log n)−3/4 − E|Z | √ π ≥ − c2 (log n)−1/16 . 2
for some appropriate constant c2 . Thus we have established (3), which proves Theorem 1.
References 1. Aistleitner, C., Berkes, I.: On the central limit theorem for f (n k x). Probab. Theory Relat. Fields 146(1–2), 267–289 (2010) 2. Aistleitner, C., Berkes, I., Tichy, R.: On the law of the iterated logarithm for permuted lacunary sequences. Proc. Steklov Inst. Math. 276, 3–20 (2012) 3. Aistleitner, C., Hofer, M.: On the maximal spectral type of a class of rank one transformations. Dyn. Syst. 27(4), 515–523 (2012) 4. Berkes, I.: A central limit theorem for trigonometric series with small gaps. Z. Wahrsch. Verw. Gebiete 47(2), 157–161 (1979) 5. Bochkarev, S.V., Multiplicative inequalities for the L 1 -norm: applications to analysis and number theory. Tr. Mat. Inst. Steklova. 255 (Funkts. Prostran., Teor. Priblizh., Nelinein. Anal.), 55–70 (2006) 6. Bourgain, J.: On the spectral type of Ornstein’s class one transformations. Israel J. Math. 84(1–2), 53–63 (1993) 7. El Abdalaoui, E.H.: A new class of rank-one transformations with singular spectrum. Ergod. Theory Dynam. Syst. 27(5), 1541–1555 (2007) 8. Èminyan, K.M.: The L 1 -norm of a trigonometric sum. Mat. Zametki 76(1), 133–143 (2004) 9. Erd˝os, P.: On trigonometric sums with gaps. Magyar Tud. Akad. Mat. Kutató Int. Közl 7, 37–42 (1962) 10. Fukuyama, K.: Pure Gaussian limit distributions of trigonometric series with bounded gaps. Acta Math. Hungar. 129(4), 303–313 (2010) 11. Fukuyama, K.: A central limit theorem to trigonometric series with bounded gaps. Probab. Theory Relat. Fields 149(1–2), 139–148 (2011) 12. Garaev, M.Z.: Upper bounds for the number of solutions of a Diophantine equation. Trans. Am. Math. Soc. 357(6), 2527–2534 (2005)
123
C. Aistleitner 13. Hardy, G.H., Littlewood, J.E.: A new proof of a theorem on rearrangements. J. London Math. Soc. 23, 163–168 (1948) 14. Karatsuba, A.A.: An estimate for the L 1 -norm of an exponential sum. Mat. Zametki 64(3), 465–468 (1998) 15. Klemes, I., Reinhold, K.: Rank one transformations with singular spectral type. Israel J. Math. 98, 1–14 (1997) 16. Konyagin, S.V.: On the Littlewood problem. Izv. Akad. Nauk SSSR Ser. Mat. 45(2), 243–265, 463 (1981) 17. McGehee, O.C., Pigno, L., Smith, B.: Hardy’s inequality and the L 1 norm of exponential sums. Ann. Math. (2) 113(3), 613–618 (1981) 18. Moore, C.N., Zhang, X.: A law of the iterated logarithm for general lacunary series. Colloq. Math. 126(1), 95–103 (2012) 19. Salem, R., Zygmund, A.: On lacunary trigonometric series. Proc. Natl. Acad. Sci. USA 33, 333–338 (1947)
123
Data Loading...