On Certain Transformation Formulas Involving Basic Hypergeometric Series

  • PDF / 217,288 Bytes
  • 5 Pages / 595.276 x 790.866 pts Page_size
  • 112 Downloads / 205 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE

On Certain Transformation Formulas Involving Basic Hypergeometric Series Satya Prakash Singh1 • Vijay Yadav2

Received: 5 January 2018 / Revised: 4 April 2019 / Accepted: 8 April 2019 Ó The National Academy of Sciences, India 2019

Abstract In this paper, making use of Bailey’s transform and certain summations of basic hypergeometric series, we have established interesting transformation formulae involving basic hypergeometric series. Keywords Bailey transform  Summation formula  Transformation formula  Basic hypergeometric series Mathematics Subject Classification Primary 33D15  11P83

1 Introduction, Notations and Definitions For real or complex q, jqj\1, let 1 Y ð1  kqi Þ ðk; qÞl ¼ ð1  kqlþi Þ i¼0

ð1Þ

for arbitrary k and l, so that  ðk; qÞn ¼

1;

n¼0

ð1  kÞð1  kqÞ    ð1  kqn1 Þ;

n ¼ 1; 2; 3; . . .

ðk; qÞ1 ¼

ð1  kqi Þ:

ð3Þ

i¼0

Define as usual, a generalized q-hypergeometric function by [Srivastava and Karlsson [1]; (272) p. 347], see also Slater [2],   a1 ; a2 ; . . .; ar ; q; z U r s b1 ; b2 ; . . .; bs ; qk ð4Þ 1 X ða1 ; a2 ; . . .; ar ; qÞn zn qknðn1Þ=2 ¼ ; ðq; b1 ; b2 ; . . .; bs ; qÞn n¼0 where ða1 ; a2 ; a3 ; . . .; ar ; qÞn ¼ ða1 ; qÞn ða2 ; qÞn . . .ðar ; qÞn : Series in Eq. (4) converges for jqj\1; jzj\1 if k [ 0 and if k ¼ 0; then, for r ¼ s þ 1, it converges in the unit circle jzj\1 provided no denominator parameter is of the form qk for k positive integer. Bailey established a simple, remarkable and extremely useful transform, known as Bailey’s transform, which states, If n X bn ¼ ar unr vnþr ð5Þ

ð2Þ and

1 Y

r¼0

and cn ¼

1 X

drþn ur vrþ2n ;

ð6Þ

r¼0

& Satya Prakash Singh [email protected] Vijay Yadav [email protected] 1

Department of Mathematics, T.D.P.G. College, Jaunpur, Uttar Pradesh 222002, India

2

Department of Mathematics and Statistics, S.P.D.T. College, Andheri (East), Mumbai 400059, India

where ur ; vr ; ar and dr are any functions of r alone and the series cn exists, then 1 1 X X an c n ¼ bn dn ; ð7Þ n¼0

n¼0

provided both series of Eq. (7) converge.

123

S. P. Singh, V. Yadav 1r 2 2

r

form takes the following form: If n q 2n X 1 ar vrþn ð1Þr ðqn ; qÞr q2r ðq; qÞn r¼0 1 2

bn ¼

ð8Þ

a1=3 ; xa1=3 ; x2 a1=3 ; aq1þn ; qn ; q; q pffiffiffi pffiffiffi pffiffiffiffiffi pffiffiffiffiffi 5 U4 q a;  a; aq;  aq pffiffiffi ð aÞnm ðq; qÞn ðaq3 ; q3 Þm ¼ : ðaq; qÞn ðq3 ; q3 Þm

# ð15Þ

[Verma and Jain [3]; (4.5)p. 1036] # pffiffiffi a1=3 ; xa1=3 ; x2 a1=3 ; q a; aq1þn ; qn ; q; q pffiffiffi pffiffiffi pffiffiffiffiffi pffiffiffiffiffi 2 pffiffiffi 6 U5 a;  a; aq;  aq; q a pffiffiffi pffiffiffi pffiffiffi ðq; qÞn ð a; qÞn ðaq3 ; q3 Þm ðq6 a; q3 Þm ð aÞnm pffiffiffi pffiffiffi ¼ : ðaq; qÞn ðq2 a; qÞn ðq3 ; q3 Þm ð a; q3 Þm "

and 1

c n ¼ q 2n

1 2 1 1 X q 2 r þ 2r

r¼0

ðq; qÞr

n¼0

ð9Þ

vrþ2n

then under suitable convergence conditions, 1 1 X X an c n ¼ bn dn :

ð16Þ ð10Þ

n¼0

We make use of this new form of Bailey’s transform given in Eqs. (8)–(10) in our analysis. The following summation formulae are used in the next section.  n 2 2 1þn  q ; x y q ; x; xq; q; q 4 U3 xyq; xyq; x2 q ð11Þ xn ðq; qÞn ðx2 q2 ; q2 Þm ðy2 q2 ; q2 Þm ;