On Certain Transformation Formulas Involving Basic Hypergeometric Series
- PDF / 217,288 Bytes
- 5 Pages / 595.276 x 790.866 pts Page_size
- 112 Downloads / 244 Views
		    RESEARCH ARTICLE
 
 On Certain Transformation Formulas Involving Basic Hypergeometric Series Satya Prakash Singh1 • Vijay Yadav2
 
 Received: 5 January 2018 / Revised: 4 April 2019 / Accepted: 8 April 2019 Ó The National Academy of Sciences, India 2019
 
 Abstract In this paper, making use of Bailey’s transform and certain summations of basic hypergeometric series, we have established interesting transformation formulae involving basic hypergeometric series. Keywords Bailey transform  Summation formula  Transformation formula  Basic hypergeometric series Mathematics Subject Classification Primary 33D15  11P83
 
 1 Introduction, Notations and Definitions For real or complex q, jqj\1, let 1 Y ð1  kqi Þ ðk; qÞl ¼ ð1  kqlþi Þ i¼0
 
 ð1Þ
 
 for arbitrary k and l, so that  ðk; qÞn ¼
 
 1;
 
 n¼0
 
 ð1  kÞð1  kqÞ    ð1  kqn1 Þ;
 
 n ¼ 1; 2; 3; . . .
 
 ðk; qÞ1 ¼
 
 ð1  kqi Þ:
 
 ð3Þ
 
 i¼0
 
 Define as usual, a generalized q-hypergeometric function by [Srivastava and Karlsson [1]; (272) p. 347], see also Slater [2],   a1 ; a2 ; . . .; ar ; q; z U r s b1 ; b2 ; . . .; bs ; qk ð4Þ 1 X ða1 ; a2 ; . . .; ar ; qÞn zn qknðn1Þ=2 ¼ ; ðq; b1 ; b2 ; . . .; bs ; qÞn n¼0 where ða1 ; a2 ; a3 ; . . .; ar ; qÞn ¼ ða1 ; qÞn ða2 ; qÞn . . .ðar ; qÞn : Series in Eq. (4) converges for jqj\1; jzj\1 if k [ 0 and if k ¼ 0; then, for r ¼ s þ 1, it converges in the unit circle jzj\1 provided no denominator parameter is of the form qk for k positive integer. Bailey established a simple, remarkable and extremely useful transform, known as Bailey’s transform, which states, If n X bn ¼ ar unr vnþr ð5Þ
 
 ð2Þ and
 
 1 Y
 
 r¼0
 
 and cn ¼
 
 1 X
 
 drþn ur vrþ2n ;
 
 ð6Þ
 
 r¼0
 
 & Satya Prakash Singh [email protected] Vijay Yadav [email protected] 1
 
 Department of Mathematics, T.D.P.G. College, Jaunpur, Uttar Pradesh 222002, India
 
 2
 
 Department of Mathematics and Statistics, S.P.D.T. College, Andheri (East), Mumbai 400059, India
 
 where ur ; vr ; ar and dr are any functions of r alone and the series cn exists, then 1 1 X X an c n ¼ bn dn ; ð7Þ n¼0
 
 n¼0
 
 provided both series of Eq. (7) converge.
 
 123
 
 S. P. Singh, V. Yadav 1r 2 2
 
 r
 
 form takes the following form: If n q 2n X 1 ar vrþn ð1Þr ðqn ; qÞr q2r ðq; qÞn r¼0 1 2
 
 bn ¼
 
 ð8Þ
 
 a1=3 ; xa1=3 ; x2 a1=3 ; aq1þn ; qn ; q; q pffiffiffi pffiffiffi pffiffiffiffiffi pffiffiffiffiffi 5 U4 q a;  a; aq;  aq pffiffiffi ð aÞnm ðq; qÞn ðaq3 ; q3 Þm ¼ : ðaq; qÞn ðq3 ; q3 Þm
 
 # ð15Þ
 
 [Verma and Jain [3]; (4.5)p. 1036] # pffiffiffi a1=3 ; xa1=3 ; x2 a1=3 ; q a; aq1þn ; qn ; q; q pffiffiffi pffiffiffi pffiffiffiffiffi pffiffiffiffiffi 2 pffiffiffi 6 U5 a;  a; aq;  aq; q a pffiffiffi pffiffiffi pffiffiffi ðq; qÞn ð a; qÞn ðaq3 ; q3 Þm ðq6 a; q3 Þm ð aÞnm pffiffiffi pffiffiffi ¼ : ðaq; qÞn ðq2 a; qÞn ðq3 ; q3 Þm ð a; q3 Þm "
 
 and 1
 
 c n ¼ q 2n
 
 1 2 1 1 X q 2 r þ 2r
 
 r¼0
 
 ðq; qÞr
 
 n¼0
 
 ð9Þ
 
 vrþ2n
 
 then under suitable convergence conditions, 1 1 X X an c n ¼ bn dn :
 
 ð16Þ ð10Þ
 
 n¼0
 
 We make use of this new form of Bailey’s transform given in Eqs. (8)–(10) in our analysis. The following summation formulae are used in the next section.  n 2 2 1þn  q ; x y q ; x; xq; q; q 4 U3 xyq; xyq; x2 q ð11Þ xn ðq; qÞn ðx2 q2 ; q2 Þm ðy2 q2 ; q2 Þm ;		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	