On the classification of simple Lie algebras of dimension seven over fields of characteristic 2
- PDF / 1,718,505 Bytes
- 11 Pages / 439.37 x 666.142 pts Page_size
- 32 Downloads / 240 Views
		    On the classification of simple Lie algebras of dimension seven over fields of characteristic 2 Alexander Grishkov1,2 · Marinês Guerreiro3 · Wilian Francisco de Araujo4
 
 © Instituto de Matemática e Estatística da Universidade de São Paulo 2020
 
 Abstract This paper is the second part of paper (Grishkov and Guerreiro in São Paulo J Math Sci v4(1):93–107, 2010) about simple 7-dimensional Lie algebras over an algebraically closed field k of characteristic two. In this paper we prove that all simple 7-dimensional Lie algebras over k of absolute toral rank three are isomorphic to the Cartan algebra W1 or the Hamilton algebra H2 . We hope to prove that those algebras are the unique simple 7-dimensional Lie algebras over the field k. Observe that in the case of absolute toral rank 2 this fact was proved in [2]. Keywords  Simple Lie algebra · Toral subalgebra · Absolute toral rank
 
 Communicated by Vyacheslav Futorny. A. Grishkov: Supported by FAPESP and CNPq Processo 307824/2016-0, Brazil and RFBR, Grant 16-01-00577a, Russian. M. Guerreiro: Supported by FAPESP Processo N. 04/07774-2, Brazil. * Alexander Grishkov [email protected] Marinês Guerreiro [email protected] Wilian Francisco de Araujo [email protected] 1
 
 Instituto de Matemática e Estatística, Universidade de São Paulo Rua do Matão 1010, São Paulo CEP 05508‑090, Brazil
 
 2
 
 Omsk State University, n.a. F.M.Dostoevskii pr. Mira 55‑A, Omsk, Russia 644077
 
 3
 
 Departamento de Matemática, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Viçosa, M.G., Brazil
 
 4
 
 Universidade Tecnológica Federal do Paraná, R. Cristo Rei, Vila Becker, Toledo, PR, Brazil
 
 
 
 13
 
 Vol.:(0123456789)
 
 
 
 São Paulo Journal of Mathematical Sciences
 
 1 Introduction The classification of simple finite dimensional Lie algebras over an algebraically closed field k of characteristic two is not finished until now. The first case when we have not yet the classification of the simple n-dimensional Lie algebras over k is the case n = 7 . We know two simple 7-dimensional Lie algebras over k, the Cartan algebra W1 and the Hamilton algebra H2 . Recall the definition of those algebras from [2]. In the two following tables we give the multiplication of the 2-closure W of the Witt–Zassenhaus algebra W1 and the 2-closure H of the Hamilton algebra H2 . 𝜂
 
 𝜅
 
 𝜅
 
 y−1
 
 y0
 
 y1
 
 y2
 
 y3
 
 y4
 
 y5
 
 𝜂
 
 0
 
 y4
 
 y2
 
 y5
 
 0
 
 0
 
 0
 
 0
 
 0
 
 0
 
 𝜅
 
 y4
 
 𝜅
 
 0
 
 0
 
 0
 
 y−1
 
 y0
 
 y1
 
 y2
 
 y3
 
 𝜅 [2]
 
 y2
 
 0
 
 0
 
 0
 
 0
 
 0
 
 0
 
 y−1
 
 y0
 
 y1
 
 y−1
 
 y5
 
 0
 
 0
 
 𝜅
 
 y−1
 
 y0
 
 y1
 
 y2
 
 y3
 
 y4
 
 y0
 
 0
 
 0
 
 0
 
 y−1
 
 y0
 
 y1
 
 0
 
 y3
 
 0
 
 y5
 
 y1
 
 0
 
 y−1
 
 0
 
 y0
 
 y1
 
 y2
 
 0
 
 y4
 
 y5
 
 0
 
 y2
 
 0
 
 y0
 
 0
 
 y1
 
 0
 
 0
 
 0
 
 y5
 
 0
 
 0
 
 y3
 
 0
 
 y1
 
 y−1
 
 y2
 
 y3
 
 y4
 
 y5
 
 𝜂
 
 0
 
 0
 
 y4
 
 0
 
 y2
 
 y0
 
 y3
 
 0
 
 y5
 
 0
 
 0
 
 0
 
 0
 
 y5
 
 0
 
 y3
 
 y1
 
 y4
 
 y5
 
 0
 
 0
 
 0
 
 0
 
 0
 
 Table of multiplication of the 2-closure W of W1. In this table the last seven elements form a basis of the simple Lie algebra W1 . t
 
 m
 
 n
 
 V0
 
 V1
 
 E1
 
 E0
 
 F0
 
 G
 
 t
 
 t
 
 0
 
 0
 
 V0
 
 V1
 
 0
 
 0
 
 m
 
 0
 
 0
 
 E0
 
 0
 
 0
 
 0
 
 0
 
 F1
 
 F0
 
 0
 
 V1
 
 V0
 
 n
 
 0
 
 E0
 
 0
 
 0
 
 F1
 
 G
 
 0
 
 E1
 
 0
 
 0
 
 0
 
 V0
 
 V0
 
 0
 
 0
 
 0
 
 0
 
 V1
 
 V1
 
 V1
 
 0
 
 F1
 
 0
 
 m		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	