On the estimation of plume rise velocity in gas-stirred ladles
- PDF / 126,304 Bytes
- 5 Pages / 612 x 792 pts (letter) Page_size
- 25 Downloads / 145 Views
6. 7. 8. 9. 10.
(a) 11. 12. 13. 14. 15.
Welding Science and Technology, Int. Conf. Proc., Gatlinburg, TN, May 14–18, 1989, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 303-07. M.J. Cola, T.J. Linert, J.E. Gouland, and J.P. Hurley: Recent Trends in Welding Science and Technology, Int. Conf. Proc., Gatlinburg, TN, May 14–18, 1989, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 297-303. T.J. Linert, E.D. Brandon, and J.C. Lippol: Scripta Metall. Mater., 1993, vol. 28, pp. 1341-46. J.H. Devletian: Welding J., 1987, pp. 33-39. S. Fukumoto, A. Hirose, and K.F. Kobayashi: Mater. Sci. Technol., 1993, vol. 9, pp. 264-71. B. Altshuller, W. Christy, and B. Wiskel: Proc. 2nd Int. Conf. on Trends in Welding Research, Gatlinburg, TN, May 14–18, 1989, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 305-09. R. Garcı´a, V.H. Lo´pez, E. Bedolla, and A. Manzano: Universidad Michoacana, Morelia, Michoaca´n, Me´xico, unpublished research, 2001. M.J. Lu and S. Kou: Welding J., 1989, vol. 68 (9), pp. 382s-388s. M.J. Lu and S. Kou: Welding J., 1989, vol. 68 (11), pp. 452s-456s. Y.S. Kim, D.M. McEligot, and T.W. Eagar: Welding J., 1991, vol. 70 (1), pp. 20s-31s. M.E. Fine and J.G. Conley: Metall. Trans. A, 1990, vol. 21A, pp. 2609-10. A. Banerji and W. Refi: Metall. Trans. A, 1986, vol. 17A, pp. 2127-37.
On the Estimation of Plume Rise Velocity in Gas-Stirred Ladles DIPAK MAZUMDAR (b) Fig. 7—XRD pattern of the welds: (a) DEA and (b) IEA. In both cases, the parent metal was preheated to 150 ⬚C before welding.
Nearly 2 decades ago, Sahai and Guthrie[1] carried out a detailed hydrodynamic analysis of gas-stirred ladle systems from the first principles and proposed a macroscopic model for estimating plume rise velocity (synonymous with the upward rise velocity of the gas ⫹ liquid mixture) in such systems. Equating the energy supplied by the rising bubbles to the turbulence energy dissipation losses within an axisymmetric, bubble stirred ladle under steady-state condition, these authors[1] demonstrated that the average plume rise velocity in such systems can be expressed in terms of the key operating variables, namely, the depth of liquid in the ladle (L), the vessel radius (R), and the ambient gas flow rate (Q) (referenced to melt temperature and mean hydrostatic pressure) according to UP ⫽ KQ0.33 L0.25 R⫺0.33
[1]
Implicit in the derivation of Eq. [1] was an empirical correlation, which related the mean speed of bath recirculation, U, to the average plume rise velocity, UP , as U (R)0.33 ⫽ 0.18 UP Fig. 8—XRD pattern of the weld without excess of weld at the top, with a preheat to 150 ⬚C before welding: (a) IEA weld transversal section and (b) IEA weld longitudinal at top side.
REFERENCES 1. J.S. Ahearn, C. Cook, and S.G. Fishman: Met. Consts., 1982, vol. 14 (4), pp. 132-37. 2. T. Iseki, T. Kameda, and T. Murayama: J. Mater. Sci., 1984, vol. 13, pp. 1632-38. 3. J. Viala, P. Fortier, B. Bonnetot, and J. Bouix: Mater. Res. Bull., 1986, vol. 21, pp. 387-34. 4. C.D. Lundin, J.C. Danko, and C.J. Swindeman: Recent Trends in METALLURGICA
Data Loading...