Operator Algebras and Quantum Statistical Mechanics Equilibrium Stat

In this chapter, and the following one, we examine various applications of C*-algebras and their states to statistical mechanics. Principally we analyze the structural properties of the equilibrium states of quantum systems con­ sisting of a large number

  • PDF / 41,266,973 Bytes
  • 508 Pages / 439.37 x 666.142 pts Page_size
  • 110 Downloads / 222 Views

DOWNLOAD

REPORT


W. BeiglbOck M. Goldhaber E. H. Lieb W. Thirring Series Editors

Ola Bratteli Derek W. Robinson

Operator Algebras and Quantum Statistical Mechanics II Equilibrium States Models in Quantum Statistical Mechanics

I

Springer Science+ Business Media, LLC

Ola Bratteli

Derek W. Robinson

Institutt for Matematikk Norges Tekniske HI'Jgskole Universitetet 1 Trondheim N-7034 Trondheim Norway

School of Mathematics University of New South Wales P.O. Box 1 Kensington, NSW 2033 Australia

Editors:

Wolf BeiglbOck

Maurice Goldhaber

Institut fUr Angewandte Mathematik Universitiit HeideIberg Im Neuenheimer Feld 5 D-6900 Heidelberg 1 Federal Republic of Germany

Department of Physics Brookhaven National Laboratory Associated Universities, Inc. Upton, NY 11973 USA

Elliott H. Lieb

Walter Thirring

Department of Physics Joseph Henry Laboratories Princeton University P.O. Box 708 Princeton, NJ 08540 USA

Institut fUr Theoretische Physik der Universitiit Wien Boltzmanngasse 5 A-1090Wien Austria

ISBN 978-3-662-09091-6 ISBN 978-3-662-09089-3 (eBook) DOI 10.1007/978-3-662-09089-3

Library of Congress Cataloging in Publication Data Bratteli, Ola. Operator algebras and quantum statistical mechanics. (Texts and monographs in physics) Bibliography: p. Includes index. QA326.B74 512'.55 78-27159 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC.

© 1981 by Springer Science+Business Media New York

Originally published by Springer-Verlag New York Inc. in 1981 Softcover reprint ofthe hardcover Ist edition 1981

987654321

To Trygve Bratteli, Samuel Robinson,

and Harold Ross

Contents Volume II

States in Quantum Statistical Mechanics 5.1. Introduction

3

5.2. Continuous Quantum Systems. I

6

5.2.1. 5.2.2. 5.2.3. 5.2.4. 5.2.5.

The CAR and CCR Relations The CAR and CCR Algebras States and Representations The Ideal Fermi Gas The Ideal Bose Gas

5.3. KMS States 5.3.1. The KMS Condition 5.3.2. The Set of KMS States 5.3.3. The Set of Ground States

5.4. Stability and Equilibrium

5.4.1. Stability of KMS States 5.4.2. Stability and the KMS Condition

6

15 24 46

58

77 77 116 133

147 147 180 vii

viii Contents Volume II 5.4.3. Gauge Groups and the Chemical Potential 5.4.4. Passive Systems

203 217

Notes and Remarks

223

Models of Quantum Statistical Mechanics

239

6.1. Introduction

241

6.2. Quantum Spin Systems

243

6.2.1. Kinematical and Dynamical Descriptions 6.2.2. The Gibbs Condition for Equilibrium 6~2.3. The Maximum Entropy Principle 6.2.4. Translationally Invariant States 6.2.5. Uniqueness of KMS States 6.2.6. Nonuniqueness ofKMS States 6.2.7. Ground States

6.3. Continuous Quantum Systems. II 6.3.1. 6.3.2. 6.3.3. 6.3.4.

The Local Hamiltonians The Wiener Integral The Thermodynamic Limit. I. The Reduced Density Matrices The Thermodynamic Limit. II. States and Green's Functions

243 263 269 289 307 319 334

348 350 361 376 391

6.4. Conclusion

417

Notes and Remarks

419

References

453

Books and Monograpbs

455

Art