Plasmonic Response of Light-Activated, Nano-Gold Doped Polymers

  • PDF / 547,069 Bytes
  • 10 Pages / 432 x 648 pts Page_size
  • 57 Downloads / 208 Views

DOWNLOAD

REPORT


MRS Advances © 2019 Materials Research Society DOI: 10.1557/adv.2019.286

Plasmonic Response of Light-Activated, Nano-Gold Doped Polymers Jessica M. Andriolo,1,2 McKenzie L. Joseph,1,2 Molly C. Brockway,2,3 and Jack L. Skinner1,2,3 1

Mechanical Engineering, Montana Technological University, Butte, MT 59701

2

Montana Tech Nanotechnology Laboratory, Butte, MT 59701

3

Materials Science Ph.D. Program, Montana Technological University, Butte, MT 59701

Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ~3-nm-diameter colloidal gold (Auc) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Auc in PEG (PEG+Auc) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Auc ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Auc versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ~14 % when illuminated with green light. Auc enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to

1749

Downloaded from https://www.cambridge.org/core. Karolinska Institutet University Library, on 14 Jan 2020 at 05:25:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1557/adv.2019.286

light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials.

INTRODUCTION Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used for many applications. For instance, magnetic iron oxide NPs have been used as drug carriers target cancer tissue [1], gold NPs in polymer have been used to enhance light capturing