Plasticity and Creep of Metals

This book serves both as a textbook and a scientific work. As a textbook, the work gives a clear, thorough and systematic presentation of the fundamental postulates, theorems and principles and their applications of the classical mathematical theories of

  • PDF / 3,944,735 Bytes
  • 442 Pages / 429.442 x 659.895 pts Page_size
  • 19 Downloads / 228 Views

DOWNLOAD

REPORT


Andrew Rusinko and Konstantin Rusinko

Plasticity and Creep of Metals

ABC

Authors Andrew Rusinko Óbuda University Dept. of Mechanical and System Engineering Népszínház St. 8 Budapest Hungary

Konstantin Rusinko Budapest University of Technology and Economics Budapest Hungary

ISBN 978-3-642-21212-3

e-ISBN 978-3-642-21213-0

DOI 10.1007/978-3-642-21213-0 Library of Congress Control Number: 2011931537 c 2011 Springer-Verlag Berlin Heidelberg  This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India. Printed on acid-free paper 987654321 springer.com

Contents

Chapter 1 Classical Theories of Plasticity ........................................................ 1 1.1 Definition of Subject.................................................................................. 1 1.2 Hencky–Nadai Deformation Theory.......................................................... 3 1.3 Hencky Relations..................................................................................... 10 1.4 Infinite Thin Plate with a Circular Hole: Comparison of Three Solutions .................................................................................................. 13 1.5 Ilyushin’s Theorems ................................................................................ 20 1.6 Prager Deformation Theory ..................................................................... 32 1.7 Ilyushin’s Space....................................................................................... 35 1.8 Isotropy Postulate .................................................................................... 39 1.9 Loading Surface....................................................................................... 44 1.10 Drucker’s Postulate................................................................................ 47 1.11 Analysis of the Hencky–Nadai Theory.................................................. 50 1.12 Boundaries of the Applicability of the Hencky–Nadai Relations .......... 55 1.13 Flow Plasticity Theories: Isotropic Hardening Rule .............................. 60 1.14 Flow Theory for Elastic-Perfectly Plastic Materials .............................. 68 1.15 More Complicated Flo