Polymer-Derived Ceramics and Their Space Applications
Inorganic and organometallic polymers capable of giving high ceramic residue (more than 50 wt%) on heat treatment in an inert atmosphere are called “preceramic polymers.” As they are polymeric in nature, processing techniques used for conventional polymer
- PDF / 4,524,963 Bytes
- 106 Pages / 439.37 x 666.142 pts Page_size
- 11 Downloads / 199 Views
26
S. Packirisamy, K. J. Sreejith, Deepa Devapal, and B. Swaminathan
Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesis, Characterization, and Ceramic Conversion of Preceramic Polymers . . . . . . . . . . . . . Silicon Containing Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ceramics from Carbonaceous Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Filler Controlled Pyrolysis (AFCOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polymer-Derived Ceramics for Space Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ceramic Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protective Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ceramic Adhesives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lightweight Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Concluding Remarks and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
978 980 980 1007 1009 1010 1012 1023 1045 1051 1063 1065
S. Packirisamy (*) Ceramic Matrix Products Division, Analytical Spectroscopy and Ceramics Group, PCM Entity, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, India Advanced Polymeric Materials Research Laboratory, Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, India e-mail: [email protected]; [email protected] K. J. Sreejith · D. Devapal Ceramic Matrix Products Division, Analytical Spectroscopy and Ceramics Group, PCM Entity, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, India e-mail: [email protected]; [email protected]; [email protected] B. Swaminathan Ceramic Matrix Products Division, Analytical Spectroscopy and Ceramics Group, PCM Entity, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, India Morgan Advanced Materials, Murugappa Mogan Thermal Ceramics Ltd., Ranipet, Vellore District, Tamil Nadu, India e-mail: [email protected] © Springer Nature Switzerland AG 2020 Y. R. Mahajan, R.
Data Loading...