Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectru

  • PDF / 1,206,846 Bytes
  • 10 Pages / 595.276 x 790.866 pts Page_size
  • 73 Downloads / 167 Views

DOWNLOAD

REPORT


ORIGINAL RESEARCH

Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder Elizabeth Dryburgh 1 & Stephen McKenna 2 & Islem Rekik 1,3

# The Author(s) 2019

Abstract Decoding how intelligence is engrained in the human brain construct is vital in the understanding of particular neurological disorders. While the majority of existing studies focus on characterizing intelligence in neurotypical (NT) brains, investigating how neural correlates of intelligence scores are altered by atypical neurodevelopmental disorders, such as Autism Spectrum Disorders (ASD), is almost absent. To help fill this gap, we use a connectome-based predictive model (CPM) to predict intelligence scores from functional connectome data, derived from resting-state functional magnetic resonance imaging (rsfMRI). The utilized model learns how to select the most significant positive and negative brain connections, independently, to predict the target intelligence scores in NT and ASD populations, respectively. In the first step, using leave-one-out cross-validation we train a linear regressor robust to outliers to identify functional brain connections that best predict the target intelligence score (p − value < 0.01). Next, for each training subject, positive (respectively negative) connections are summed to produce single-subject positive (respectively negative) summary values. These are then paired with the target training scores to train two linear regressors: (a) a positive model which maps each positive summary value to the subject score, and (b) a negative model which maps each negative summary value to the target score. In the testing stage, by selecting the same connections for the left-out testing subject, we compute their positive and negative summary values, which are then fed to the trained negative and positive models for predicting the target score. This framework was applied to NT and ASD populations independently to identify significant functional connections coding for full-scale and verbal intelligence quotients in the brain. Keywords Autism spectrum disorder . Functional connectivity . Feature selection . Resting-state fMRI . Connectome-based prediction modelling . Intelligence scores

Introduction Autism is a spectrum neurodevelopmental disorder associated with social interaction difficulties and repetitive behaviors. Recently, Autism Spectrum Disorder (ASD) cases have increased to 1/160 children globally, according to the World Health Organization (WHO). The centers for disease control and prevention (CDC) estimate nearly 1 in 59 children in the US have ASD. A massive limitation of ASD diagnosis is the * Islem Rekik [email protected] 1

BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK

2

CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK

3

Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey

breadth of its symptoms as well as a