Prediction of activities of oxygen in dilute quaternary solutions using binary data

  • PDF / 453,980 Bytes
  • 6 Pages / 612 x 792 pts (letter) Page_size
  • 8 Downloads / 201 Views

DOWNLOAD

REPORT


It follows that

e E AliA(A+B+C) = I, ~ NB Al'tA(A+B)

A E P'A(A+C) NA

+ ~

-

(1

[4]

--NA)2[AGfB+Cl]N~/Nc

iii) The t h i r d a l t e r n a t e e x p r e s s i o n 3 in t e r m s of b i n a r y v a l u e s of AG E along c o m p o s i t i o n paths with c o n s t a n t NA/NB, NB/N C and NA/Nc, shown in Fig. 2, is:

E AG(A+B+C) = (1 - .z[AG(A+B) Rr - ~ c ~ ~ R~

AG~A+B+C) = AH(A+B+C) = NANB~AB + NANC~AC + NBNC[3BC

+ (1-

- .2/Ac~+cl NA~ ~, R T

NA/N~,

)NB/Nc

+ (1-- NB)2(AG~R~+C) )NA//NC

where

[3AB=-ZN'IEAt3-(EAA

; EBB)landsoforth[1 ]

[5]

The p a r t i a l m o l a r p r o p e r t i e s a r e given by e x p r e s s i o n s of the type

and

A

A#~(A+B+C) = AHA(A+B+C) = #Aa~VB(WB + NC) + #ACNC(NB + NC)

[2]

- NSNC~BC

~ N ~BE/ NI AC : cor~l:.

ii) The v a l u e of hG~A+B+C) m a y a l s o be e x p r e s s e d in t e r m s of b i n a r y v a l u e s of AG E along c o m p o s i t i o n p a t h s w h e r e NA a n d NB/N C a r e c o n s t a n t , 3 a s shown in F i g . 1.

AG~A+B+C) _ RT

NB AG(A+B) + NA) RT

(1 -



NC Yg)

(1 -

~C?A+C)] . (1 N A ) 2 RT .JNA



,

L

RT

[a]

.]NB/N C

K. T. JACOB and C. B. ALCOCKare Postdoctoral Fellow, and Professor and Chairman, respectively, Department of Metallurgy and Materials Science, University of Toronto, Toronto, Canada. Manuscript submitted July 28, 1971. METALLURGICALTRANSACTIONS

E

+C) ' /~G(A+C)

~ B

~I ~st.

c)

c

Fig. 1--Location of binary data points used in Eqs. [3] and [4]. VOLUME 3, JULY 1972-1913

E

E A ItB (A+B+C) = [(1 -- Nc)AP.B(A+B)

+ NC(1 -- Nc)AG~A+B ) ]NA/N B + [(1 - NA)ApEB(B+C)

* NA(1 -- N A ) A G ~ + c ) ] N B / N c (1 -

-

N

z

E

B) [C(A+C]NA/NC

[6]

Olson and Toop a have shown that the e x c e s s f r e e e n ergy of n o n r e g u l a r liquid s o l u t i o n s f o r m e d by t h r e e m e t a l l i c c o n s t i t u e n t s m a y be obtained in an e m p i r i c a l m a n n e r f r o m the data on the t h r e e b i n a r i e s involved, even though the b i n a r i e s do not c o n f o r m to a s i m p l e r e g u l a r b e h a v i o r . The second and t h i r d t r e a t m e n t s shown above a r e m o r e useful for the e m p i r i c a l c a l c u lation of b i n a r y e x c e s s f r e e e n e r g i e s for n o n r ~ g u l a r s y s t e m s , b e c a u s e the e x p e r i m e n t a l b i n a r y AG v a l u e s m a y be used d i r e c t l y in t h e s e e x p r e s s i o n s r a t h e r than a v e r a g e d v a l u e s for the c o n s t a n t s ~ A B , and so forth, in Eqs. [1] and [2]. However, the second method of r e p r e s e n t a t i o n has b e e n shown a to give different r e s u l t s for the e x c e s s t e r n a r y f r e e e n e r g y s u r f a c e of a n o n r e g u l a r solution, depending on the choice of component s u b s c r i p t s . Eqs. [5] and [6] a r e t h e r e f o r e most s u i t a b l e for c a l c u l a t i n g AG~+B+C) and the a c t i v i t y coeffic i e n t s of A, B, and C in a t e r n a r y solution, f o r m e d by three metallic constituents. B a s e d on a r e g u l a r solution model, the p a r