Prediction of the thermodynamic properties of solutes in the Bi-based ternary dilute solution
- PDF / 120,479 Bytes
- 5 Pages / 612 x 792 pts (letter) Page_size
- 99 Downloads / 211 Views
g. 2—Effect of the flow rate on the foaming index.
Fig. 3—Effect of the gas flow rate on the foaming index.
reasonably constant. But, when the bubble-dispersed phase is absent, an increase of superficial velocity will result in a higher foam volume with a consequent increase of . Equation [20] shows that an increase of results in lower foaming index. Thus, if the foam height is plotted with superficial velocity, initially, it will increase linearly with superficial velocity following Eq. [20], and then, as the bubble-dispersed phase becomes completely consumed, the rate of increase of foam height will gradually decrease due to an increase of gas fraction. Figures 2 and 3 show the plot of foam height vs superficial velocity obtained by Wu et al.[6] and Zamalloa et al.,[12] respectively. The results of Wu et al., corresponding to 1450 ⬚C and 1500 ⬚C, follow the preceding trend, but the plots of 1550 ⬚C and 1600 ⬚C are linear in the complete range of gas velocity. Because viscosity decreases with an increase in temperature, the drainage rate of liquid through a Plateau border is higher at higher temperature according to Eq. [14] or when the foaming index is lower, as shown by Eq. [21]. Thereby, at high temperature, the bubble-dispersed phase was present, even at the maximum flow rate leading to a linear relationship. Zamalloa’s plots at 1300 ⬚C and 1350 ⬚C without additions of P2O5 are linear, indicating the presence of a bubble-dispersed phase. 502—VOLUME 33B, JUNE 2002
1. K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 509-14. 2. R. Jiang and R.J. Fruehen: Metall. Trans. B, 1991, vol. 22B, pp. 481-48. 3. Y. Zhang and R.J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 803-12. 4. S. Jung and R.J. Fruehan: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 348-355. 5. H. Kim, D. Min, and J. Park: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 317-23. 6. K. Wu, W. Qian, S. Chu, Q. Niu, and H. Luo: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 954-57. 7. S.R. Sarma and K.C. Khilar: Ind. Eng. Chem. Res., 1988, vol 27, pp. 892-94. 8. G. Narsimhan and E. Ruckenstein: Langmuir, 1986, vol. 2, p. 494. 9. D. Dasai and R. Kumar: Chem. Eng. Sci., 1982, vol. 37, p. 1361. 10. R.A. Leonard and R. Lemlich: AChEJ., 1965, vol. 11, p. 18. 11. S.A. Koehler, S. Hilgenfeldt, and H.A. Stone: Phys. Rev. Lett., 1999, vol. 24, pp. 4232-35. 12. M. Zamalloa, A. Warczok, and T. Utigard: Electric Furnace Conf. Proc., Toronto, 1991, vol. 49, pp. 197-204. 13. C.F. Cooper and J.A. Kitchener: J. Iron Steel Inst., 1959, vol. 193, pp. 48-55. 14. Slag Atlas, 2nd ed., VDEh, Verlag Stahleisen GmbH, 1995, p. 441. 15. S. Hara, M. Ikuta, M. Kitamura, and K. Ogino: Tetsu-to-Hagane´, 1983, vol. 69, p. 1152. 16. W. Harris, R. David, and M. Charles: J. Fluid Mech., 1999, vol. 379, pp. 279-302. 17. A. Kapoor and G.A. Irons: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 829-38. 18. P.H. Hadland, R. Balasubramaniam, G. Wozniak, and R.S. Subramanian: Exp. Fluids, 1999, vol. 26, pp. 240-48. 19. F. Hernainz and A. Caro: J. Chem. Eng. Data, 2001
Data Loading...