Prediction of the thermodynamic properties of solutes in the Bi-based ternary dilute solution

  • PDF / 120,479 Bytes
  • 5 Pages / 612 x 792 pts (letter) Page_size
  • 99 Downloads / 211 Views

DOWNLOAD

REPORT


g. 2—Effect of the flow rate on the foaming index.

Fig. 3—Effect of the gas flow rate on the foaming index.

reasonably constant. But, when the bubble-dispersed phase is absent, an increase of superficial velocity will result in a higher foam volume with a consequent increase of ␧. Equation [20] shows that an increase of ␧ results in lower foaming index. Thus, if the foam height is plotted with superficial velocity, initially, it will increase linearly with superficial velocity following Eq. [20], and then, as the bubble-dispersed phase becomes completely consumed, the rate of increase of foam height will gradually decrease due to an increase of gas fraction. Figures 2 and 3 show the plot of foam height vs superficial velocity obtained by Wu et al.[6] and Zamalloa et al.,[12] respectively. The results of Wu et al., corresponding to 1450 ⬚C and 1500 ⬚C, follow the preceding trend, but the plots of 1550 ⬚C and 1600 ⬚C are linear in the complete range of gas velocity. Because viscosity decreases with an increase in temperature, the drainage rate of liquid through a Plateau border is higher at higher temperature according to Eq. [14] or when the foaming index is lower, as shown by Eq. [21]. Thereby, at high temperature, the bubble-dispersed phase was present, even at the maximum flow rate leading to a linear relationship. Zamalloa’s plots at 1300 ⬚C and 1350 ⬚C without additions of P2O5 are linear, indicating the presence of a bubble-dispersed phase. 502—VOLUME 33B, JUNE 2002

1. K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 509-14. 2. R. Jiang and R.J. Fruehen: Metall. Trans. B, 1991, vol. 22B, pp. 481-48. 3. Y. Zhang and R.J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 803-12. 4. S. Jung and R.J. Fruehan: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 348-355. 5. H. Kim, D. Min, and J. Park: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 317-23. 6. K. Wu, W. Qian, S. Chu, Q. Niu, and H. Luo: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 954-57. 7. S.R. Sarma and K.C. Khilar: Ind. Eng. Chem. Res., 1988, vol 27, pp. 892-94. 8. G. Narsimhan and E. Ruckenstein: Langmuir, 1986, vol. 2, p. 494. 9. D. Dasai and R. Kumar: Chem. Eng. Sci., 1982, vol. 37, p. 1361. 10. R.A. Leonard and R. Lemlich: AChEJ., 1965, vol. 11, p. 18. 11. S.A. Koehler, S. Hilgenfeldt, and H.A. Stone: Phys. Rev. Lett., 1999, vol. 24, pp. 4232-35. 12. M. Zamalloa, A. Warczok, and T. Utigard: Electric Furnace Conf. Proc., Toronto, 1991, vol. 49, pp. 197-204. 13. C.F. Cooper and J.A. Kitchener: J. Iron Steel Inst., 1959, vol. 193, pp. 48-55. 14. Slag Atlas, 2nd ed., VDEh, Verlag Stahleisen GmbH, 1995, p. 441. 15. S. Hara, M. Ikuta, M. Kitamura, and K. Ogino: Tetsu-to-Hagane´, 1983, vol. 69, p. 1152. 16. W. Harris, R. David, and M. Charles: J. Fluid Mech., 1999, vol. 379, pp. 279-302. 17. A. Kapoor and G.A. Irons: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 829-38. 18. P.H. Hadland, R. Balasubramaniam, G. Wozniak, and R.S. Subramanian: Exp. Fluids, 1999, vol. 26, pp. 240-48. 19. F. Hernainz and A. Caro: J. Chem. Eng. Data, 2001