Predictive value of the pendulum test for assessing knee extensor spasticity

  • PDF / 1,446,359 Bytes
  • 12 Pages / 595.276 x 790.866 pts Page_size
  • 53 Downloads / 180 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Predictive value of the pendulum test for assessing knee extensor spasticity Alyssa Whelan2, Andrew Sexton1, Melony Jones3, Colleen O’Connell2,3 and Chris A. McGibbon1,2*

Abstract Background: The pendulum test is commonly used to quantify knee extensor spasticity, but it is currently unknown to what extent common pendulum test metrics can detect spasticity in patients with neurological injury or disease, and if the presence of flexor spasticity influences the test outcomes. Methods: A retrospective analysis was conducted on 131 knees, from 93 patients, across four different patient cohorts. Clinical data included Modified Ashworth Scale (MAS) scores for knee extensors and flexors, and years since diagnosis. BioTone™ measures included extensor strength, passive and active range of motion, and pendulum tests of most affected or both knees. Pendulum test metrics included the relaxation index (RI), 1st flexion amplitude (F1amp) and plateau angle (Plat), where RI=F1amp/Plat. Two-way ANOVA tests were used to determine if pendulum test metrics were influenced by the degree of knee flexor spasticity graded by the MAS, and ANCOVA was used to test for confounding effects of age, years since injury, strength and range of motion (ROM). In order to identify the best pendulum test metrics, Receiver Operator Characteristic analysis and logistic regression (LR) analysis were used to classify knees by spasticity status (none or any) and severity (low/moderate or high/severe). Results: Pendulum test metrics for knee extensors were not influenced by degree of flexor spasticity, age, years since injury, strength or ROM of the limb. RI, F1amp and Plat were > 70% accurate in classifying knees by presence of clinical spasticity (from the MAS), but were less accurate (< 70%) for grading spasticity level. The best classification accuracy was obtained using F1amp and Plat independently in the model rather than using RI alone. Conclusions: We conclude that the pendulum test has good predictive value for detecting the presence of extensor spasticity, independent of the existence of flexor spasticity. However, the ability to grade spasticity level as measured by MAS using the RI and/or F1amp may be limited. Further study is warranted to explore if the pendulum test is suitable for quantifying more severe spasticity. Keywords: Spasticity, Knee extensor, Knee flexor, Pendulum test, Relaxation index, Modified Ashworth scale, Classification, Logistic regression, Receiver operator characteristic

Background Muscle spasticity can be a painful and debilitating complication that negatively impacts function and quality of life in people with upper motor neuron injury from neurological disease or trauma [1], such as acquired brain injury (trauma, stroke), cerebral palsy, multiple sclerosis and spinal cord injury. Management of spasticity typically involves pharmacologic intervention and/or ongoing physical therapy [2, 3], but a significant barrier to effective treatment * Correspondence: [email protected] 1 Institute of Biomedical E