Processing of Barium Zinc Tantalate (BZT) Microwave Dielectric Ceramics for RF Window Application in Fusion Reactor

The ever-increasing energy demand by the human civilization and rapid depletion of conventional fossil fuel has triggered the scientists and engineers to look for alternative source of energy. Fusion energy, where four hydrogen nuclei combine to produce o

  • PDF / 1,670,542 Bytes
  • 36 Pages / 439.37 x 666.142 pts Page_size
  • 63 Downloads / 219 Views

DOWNLOAD

REPORT


21

Swathi Manivannan and Dibakar Das

Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Material Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of Ceramics for RF Window Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BZT Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of Processing Conditions on Densification and Dielectric Properties . . . . . . . . . . . . . . . Microwave Sintering of BZT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Change in Ordering and Sinterability of BZT by Specific Site Doping . . . . . . . . . . . . . . . . . . . . Fabrication of RF Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

795 795 795 797 799 800 807 816 824 825 826

Abstract

The ever-increasing energy demand by the human civilization and rapid depletion of conventional fossil fuel has triggered the scientists and engineers to look for alternative source of energy. Fusion energy, where four hydrogen nuclei combine to produce one helium nucleus with subsequent release of enormous amount of energy, could very well meet the future energy demand. Radio-frequency (RF) power is used as one of the noninductive methods to maintain the fusion plasma current under steady-state condition. RF window, used in the transmission line, acts as a vacuum barrier and transmits the microwave (MW) power to the plasma and hence a very critical component in the transmission line. Microwave dielectric ceramics, with high-quality factor/low loss, high dielectric constant, good temperature stability, high dielectric strength, high thermal conductivity, high mechanical strength, and ability to braze to the base metal, are most preferred materials for RF window application. High-purity dense alumina S. Manivannan · D. Das (*) School of Engineering Sciences and Technology (SEST), University of Hyderabad, Hyderabad, India e-mail: [email protected]; [email protected] © Springer Nature Switzerland AG 2020 Y. R. Mahajan, R. Joh