q -Fractional Calculus and Equations

This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jackson’s type before turning to q-difference equati

  • PDF / 423,316 Bytes
  • 25 Pages / 439.36 x 666.15 pts Page_size
  • 79 Downloads / 253 Views

DOWNLOAD

REPORT


Tables of Fractional Derivatives and q-Derivatives

In this appendix, we collect the Riemann–Liouville fractional derivative and Caputo fractional of some q-analogues of the celebrated special functions and we also include a table of Riemann–Liouville fractional derivative for comparison.

A.1 Table of Riemann–Liouville Fractional Derivatives Table A.1 Riemann–Liouville fractional derivatives

.x/ x ˇ1 e x



 ˛ D0C  .x/; x > 0; ˛ > 0

 .ˇ/ x ˇ˛1 ; ˇ > 0  .ˇ  ˛/ .x/˛ E1;1˛ . x/

cos. x/

 .ˇ/ x ˇ˛1 1 F1 .ˇI ˇ  ˛I x/  .ˇ  ˛/ x ˛ E1=2;1˛ . 2 x 2 /

sin. .x  a//

x 1˛ E1=2;2˛ . 2 x 2 /

x ˇ1 E;ˇ . x  /

x ˇ˛1 E;ˇ˛ . x  /; ˇ;  > 0

x ˇ1 2 F1 .; I ˇI x/

 .ˇ/ x ˇ˛C1 2 F1 .; I ˇ  ˛I x/ ; ˇ > 0  .ˇ  ˛/

x ˇ1 e x

M.H. Annaby and Z.S. Mansour, q-Fractional Calculus and Equations, Lecture Notes in Mathematics 2056, DOI 10.1007/978-3-642-30898-7, © Springer-Verlag Berlin Heidelberg 2012

295

296

A Tables of Fractional Derivatives and q-Derivatives

A.2 Table of Riemann–Liouville Fractional q-Derivatives Table A.2 Riemann–Liouville fractional q-derivatives



Dq˛ 

x ˇ1 ; ˇ > 0

q x ˇ˛1 q .ˇ˛/

eq . x/

x ˛ e1;1˛ . x.1  q/1 I q/

Eq . x/

x ˛ E1;1˛ . x.1  q/1 I q/

x ˇ1 eq . x/

x ˇ˛1 q .ˇ/ ˇ ˇ˛ ; q; x/; q .ˇ˛/ 2 1 .0; q I q

x ˇ1 Eq . x/

x ˇ˛1 q .ˇ/  .q ˇ I q ˇ˛ I q; x/; q .ˇ˛/ 1 1

cosq x

x ˛ e2;1˛ . 2 x 2 .1  q/2 I q/

sinq x

.1  q/1 x 1˛ e2;2˛ . 2 x 2 .1  q/2 I q/

Cosq x

x ˛  .q 2 I q 2˛ ; q 1˛ I q 2 ; q 2 x 2 / q .1˛/ 1 2

Sinq x

x 1˛  .q 2 I q 2˛ ; q 1˛ I q 2 ; q 3 2 x 2 / q .1˛/ 1 2

cos. xI q/

x ˛ E2;1˛ .q 2 x 2 I q/

sin. xI q/

x 1˛ E2;2˛ .q 2 2 x 2 I q/

x ˇ1 E;ˇ . x  I q/

x ˇ˛1 E;ˇ˛ . x  I q/; ˇ;  > 0

x ˇ1 e;ˇ . x  I q/

x ˇ˛1 e;ˇ˛ . x  I q/; ˇ;  > 0

  x ˇ1 2 1 a; bI q ˇ I q; x

  q .ˇ/x ˇ˛1 ˇ˛ I q; x ; ˇ > 0 2 1 a; bI q q .ˇ  ˛/   q .ˇ/x ˇ˛1 ˇ ˇ˛ I q; x ; ˇ > 0 3 2 a; b; q I c; q q .ˇ  ˛/

x ˇ1 2 1 .a; bI cI q; x/

x > 0;

˛>0

 .ˇ/

ˇ>0

ˇ>0

A.3 Table of the Erd´eli–Kober Fractional q-Integral Operator The next table contains the Erd´eli–Kober fractional integrals for some q-functions. An extended table can be found in [271].

A.3 Table of the Erd´eli–Kober Fractional q-Integral Operator

297

;˛

Table A.3 The integral operator Iq ;˛  Iq  .x > 0/ x ˇ1

x ˇ1

q . C ˇ/ ; Re .ˇ C / > 0 q . C ˇ C ˛/

x ˇ1 eq . x/;

x ˇ1

 Cˇ CˇC˛  q . C ˇ/ Iq I q; x 2 1 0; q q . C ˇ C ˛/

x ˇ1

 Cˇ C˛Cˇ  q . C ˇ/ Iq I q;  x 1 1 q q . C ˇ C ˛/

x ˇ1

q . C ˇ/  q . C ˇ C ˛/

Re .ˇ C / > 0 x ˇ1 Eq . x/; Re .ˇ C / > 0 x ˇ1 cosq x; Re .ˇ C / > 0 x ˇ1 Cosq . x/; Re .ˇ C / > 0 x ˇ1 cos. xI q/; Re .ˇ C / > 0 x ˇ1 sinq x; Re.ˇ C / > 1 x ˇ1 Sinq x; Re.ˇ C / > 1 x ˇ1 sin. xI q/ Re.ˇ C / > 1

4 3 .0; 0; q

Cˇ

; q CˇC1 I q ˇC˛C ; q ˇC˛CC1 I q 2 ;  2 x 2 /

x ˇ1 q . C ˇ/  q . C ˇ C ˛/ 2 3 .q

Cˇ

; q CˇC1 I q; q C˛Cˇ ; q C˛CˇC1 I q 2 ; q 2 x 2 /;

q .ˇ C / x ˇ1  q .ˇ C  C ˛/