Quadratic Number Fields

The aim of this chapter is to present those proofs of the quadratic reciprocity law which are based on the theory of quadratic number fields. The first proof using such techniques was Gauss’s second proof; instead of developing the theory of binary quadra

  • PDF / 48,917,721 Bytes
  • 503 Pages / 439.37 x 666.142 pts Page_size
  • 94 Downloads / 233 Views

DOWNLOAD

REPORT


Springer-Verlag Berlin Heidelberg GmbH

Franz Lemmermeyer

Reciprocity laws From Euler to Eisenstein

'Spring er

Franz Lemmermeyer

http:/ /www.rzuser. uni-heidelberg.de/-hb3/ e-mail: [email protected]

Library of Congress Cataloging-in-Publication Data Lemmermeyer, Franz, 1962Reciprocity laws: from Euler to Eisenstein I Franz Lemmer meyer. p. em.-- (Springer monographs in mathematics) Includes bibliographical references and index. ISBN 978-3-662-12893-0 (eBook) ISBN 978-3-642-08628-1 DOI 10.1007/978-3-662-12893-0 1. Reciprocity theorems I. Title II. Series QA24l.L562000 512'74--dc2I

00-026905

Mathematics Subject Classification (1991): llA15

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 2000 Originally published by Springer-Verlag Berlin Heidelberg New York in 2000 Softcover reprint of the hardcover 1st edition 2000

The use of general descriptive names, registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner, Heidelberg Typesetting by the author using a Springer TEX macro package 41/3143AT-5 4 3 210 Printed on acid-free paper SPIN 10734033

Preface

The history of reciprocity laws is a history of algebraic number theory. This is a book on reciprocity laws, and our introductory remark is placed at the beginning as a warning: in fact a reader who is acquainted with little more than a course in elementary number theory may be surprised to learn that quadratic reciprocity does - in a sense that we will explain - belong to the realm of algebraic number theory. Heeke {[348, p. 59]) has formulated this as follows: Von der Entdeckung des Reziprozitiitsgesetzes kann man die moderne Zahlentheorie datieren. Seiner Form nach gehort es noch der Theorie der rationalen Zahlen an, es liillt sich aussprechen als eine Beziehung lediglich zwischen rationalen Zahlen; jedoch weist es seinem lnhalt nach iiber den Bereich der rationalen Zahlen hinaus. [... ] Die Entwicklung der algebraischen Zahlentheorie hat nun wirklich gezeigt, daB der lnhalt des quadratischen Reziprozitiitsgesetzes erst verstiindlich wird, wenn man zu den allgemeinen algebraischen Zahlen iibergeht, und daB ein dem Wesen des Problems angemessener Beweis sich am besten mit diesen hoheren Hilfsmitteln fiihren liiBt, wiihrend man von den elementaren Beweisen