Quantization on Nilpotent Lie Groups
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneou
- PDF / 5,429,010 Bytes
- 568 Pages / 439.43 x 683.15 pts Page_size
- 68 Downloads / 230 Views
Veronique Fischer Michael Ruzhansky
Quantization on Nilpotent Lie Groups Ferran Sunyer i Balaguer Award winning monograph
Progress in Mathematics Volume 314
Series Editors Hyman Bass, University of Michigan, Ann Arbor, USA Jiang-Hua Lu, The University of Hong Kong, Hong Kong SAR, China Joseph Oesterlé, Université Pierre et Marie Curie, Paris, France Yuri Tschinkel, Courant Institute of Mathematical Sciences, New York, USA
More information about this series at http://www.springer.com/series/4848
Veronique Fischer • Michael Ruzhansky
Quantization on Nilpotent Lie Groups
Veronique Fischer Department of Mathematics University of Bath Bath, UK
Michael Ruzhansky Department of Mathematics Imperial College London London, UK
ISSN 0743-1643 ISSN 2296-505X (electronic) Progress in Mathematics ISBN 978-3-319-29557-2 ISBN 978-3-319-29558-9 (eBook) DOI 10.1007/978-3-319-29558-9 Library of Congress Control Number: 2016932499 Mathematics Subject Classification (2010): 22C05, 22E25, 35A17, 35H10, 35K08, 35R03, 35S05, 43A15, 43A22, 43A77, 43A80, 46E35, 46L10, 47G30, 47L80 © The Editor(s) (if applicable) and The Author(s) 2016. This book is published open access. Open Access This book is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated. The images or other third party material in this book are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This book is published under the trade name Birkhäuser. The registered company is Springer International Publishing AG Switzerland (www.birkhauser-science.com)
Ferran Sunyer i Balaguer (1912–1967) was a selftaught Catalan mathematician who, in spite of a serious physical disability, was very active in research in classical mathematical analysis, an area in which he acquired internationa
Data Loading...